

Ida Systems Ab, Box 576, SE-581 07 Linköping, Sweden, Tel: +46 (0)13 37 37 00, Fax: +46 (0)13 37 37 90, www.idasys.se

Master Thesis

Security in Distributed Java
Applications Based on Enterprise

JavaBeans

Document title

 Security in Distributed Java
Applications Based on Enterprise JavaBeans

Document name

 Thesis 1.0.doc
Created

 31 January 2000

Document responsible

Document author

 Hans Nilsson
Version

 1.0
Ref. no.

Last saved

 9 June 2000

Abstract
The focus of this thesis was to identify what security problems exist in
distributed software systems based on the Enterprise JavaBeans
standard and to evaluate what services are available to solve these
problems. The work was carried out at the software engineering
company Ida Systems in Linköping.
The starting point for the investigation was the document and case
management system PAX-NG developed at Ida Systems. We
performed a survey of available security services that provide a
solution for the different security problems that can be found in the
software environment described above. The services were
investigated from a theoretical perspective and narrowed down from
six to four. Two of the services were implemented and evaluated in a
test bench: WebLogic SSL and Java Cryptography Extension (JCE).
The security service that was best suited for implementation in PAX-
NG was the implementation of SSL (Secure Socket Layer) provided
with the WebLogic application server.
The investigation was kept on a general level, so the results should
apply for all distributed systems based on the Enterprise JavaBeans
standard using the WebLogic application server.

Contents
ABSTRACT ...3

CONTENTS...5

1 INTRODUCTION..1

1.1 ABOUT THE THESIS ...1
1.2 BACKGROUND...1

1.2.1 Project Background ..1
1.2.2 Description of PAX-E ...1
1.2.3 Description of PAX-NG ..2
1.2.4 Security Requirements in PAX-NG ...2

1.3 PURPOSE..3
1.4 METHODOLOGY...3
1.5 TARGET GROUP...6
1.6 DEMARCATION..6
1.7 READING INSTRUCTIONS ...7

2 THEORY ON DISTRIBUTED SYSTEMS...8

2.1 DISTRIBUTED ENVIRONMENTS ..8
2.1.1 Traditional Client/Server Model...8
2.1.2 3-Tier Architecture..8

2.2 COMPONENT TRANSACTION MONITORS..10
2.2.1 TP Monitors ..10
2.2.2 Object Request Brokers (ORB) ...10
2.2.3 Component Transaction Monitors (CTM) ..11

2.3 JAVA RMI ...11
2.4 WEBLOGIC APPLICATION SERVER ..12
2.5 ENTERPRISE JAVABEANS ..13

2.5.1 Overview ...13
2.5.2 Architectural Overview...13
2.5.3 Entity Beans ..14
2.5.4 Session Beans..15

3 THEORY ON SECURITY..16

3.1 MOTIVATION...16
3.2 SECURITY THREATS AND COUNTER MEASURES ..16

3.2.1 Confidentiality...17
3.2.2 Authentication ...19
3.2.3 Integrity...19

3.3 LEVEL OF SECURITY..19
3.4 SYMMETRIC-KEY CRYPTOGRAPHY..20

3.4.1 Block Ciphers..20
3.4.2 Stream Ciphers..22

3.5 PUBLIC-KEY CRYPTOGRAPHY...22
3.5.1 General Description..22

3.6 MESSAGE AUTHENTICATION .. 24

3.6.1 Message encryption.. 24
3.6.2 One-Way Hash Function.. 24
3.6.3 Message Authentication Code .. 25

3.7 NETWORK SECURITY .. 25
3.7.1 Network Layer Security .. 27
3.7.2 Transport Layer Security ... 27
3.7.3 Application Layer Security... 29

4 SECURITY SERVICES ... 30

4.1 SURVEY OF AVAILABLE SECURITY SERVICES... 30
4.2 DESCRIPTION OF SECURITY SERVICES .. 31

4.2.1 IPSec... 31
4.2.2 WebLogic SSL .. 33
4.2.3 JCE ... 33
4.2.4 SESAME ... 34

4.3 IDENTIFICATION AND SELECTION OF CRITERIA... 35
4.4 THEORETICAL EVALUATION AND SELECTION... 36

4.4.1 Evaluation of IPSec.. 36
4.4.2 Evaluation of WebLogic SSL.. 36
4.4.3 Evaluation of JCE .. 37
4.4.4 Evaluation of SESAME... 37
4.4.5 Summery ... 38

5 TESTING AND EVALUATION ... 39

5.1 TEST OBJECTIVES ... 39
5.2 TEST BENCHES ... 39

5.2.1 Overview... 39
5.2.2 Test_Bench_One... 40
5.2.3 Test_Bench_SSL ... 42
5.2.4 Test_Bench_JCE .. 43

5.3 SELECTION OF ALGORITHMS... 45
5.4 TEST ENVIRONMENT... 45
5.5 TEST RESULTS .. 46

5.5.1 Measurements... 46
5.6 VALIDATION OF TEST RESULTS .. 48

5.6.1 Number of iterations and messages ... 48
5.6.2 Characteristics of the test data... 48
5.6.3 Key length... 48
5.6.4 Providers .. 49

5.7 EVALUATION OF TEST RESULTS ... 49

6 CONCLUSIONS.. 51

7 FUTURE WORK .. 52

8 REFERENCES .. 53

APPENDIX A: TERMINOLOGY...56

A.1 ABBREVIATIONS ..56
A.2 GLOSSARY...56

APPENDIX B: THEORY ON SECURITY METHODS...59

B.1 SYMMETRIC-KEY CRYPTOGRAPHY ..59
B.1.1 DES ...59
B.1.2 IDEA ...60
B.1.3 Blowfish...62
B.1.4 RC4 ...63

B.2 PUBLIC-KEY CRYPTOGRAPHY..64
B.2.1 Diffie-Hellman ..64
B.2.2 RSA..65

B.3 MESSAGE AUTHENTICATION ...66
B.3.1 MD5 ..66
B.3.2 SHA-1..67

Error! Style not defined. Error! Style not defined. 1

1 Introduction
This chapter gives an introduction to the thesis and to the examination project
that the thesis covers. It includes a project background, a general description of
the purpose of the project, a presentation of the methodology and reading
instructions for the thesis.

1.1 About the Thesis
This master thesis is the result of my final year examination project on the
master�s program �Computer Science and Engineering� at Linköping University.
The project was done at the software engineering company Ida Systems Ab in
Linköping and at the Department of Computer and Information Science,
Linköping University. My supervisor at Ida Systems was Fredrik Öberg and my
academic supervisors at the University were Professor Nahid Shahmehri and
Assistant Professor Juha Takkinen. I extend my gratitude to all of them for
assisting me in the writing of this thesis.

1.2 Background
This section gives a background description of the project and the host company
Ida Systems.

1.2.1 Project Background
Ida Systems Ab (Ida) is a software engineering company in Linköping that
develops document management systems and case management systems with
workflow. They provide a software platform called PAX-Enterprise (PAX-E)
which is designed to handle large volumes of information, possibly distributed
geographically on different servers.
Ida is currently planning and designing the successor to PAX-E (denoted PAX-
NG), which is a system based on a 3-tier architecture, just like PAX-E, with thin
clients written in Java and server components also written in Java as Enterprise
JavaBeans running on application servers. This final thesis evolves around PAX-
NG.

1.2.2 Description of PAX-E
PAX-E is a software platform that provides services for document management
and case management with workflow.

2  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

Document management systems are used for handling large volumes of
documents (such as word documents, pdf documents, spreadsheets, and so on)
possibly stored on multiple servers distributed geographically.
Case and workflow management systems are used for conceptualising the flow of
cases through an organisation. The idea is that in every organisation the
processes can be divided into several distinct sub-processes. For example in the
editorial office of a news paper, the process of writing a news article can be
described using the following sub-tasks: Writing an outline of the article, doing
background research, writing the article, spell checking, and finally shipping the
article to the editor for approval. The article can be seen as a case travelling
through the different nodes of the workflow.
PAX-E is designed to work in a distributed environment. This enables a group of
users to work with the same cases in a workflow and have access to the same
documents even if they are located in different offices or even in different cities.
To enable this, and to ensure scalability in the organisation, PAX-E is designed
according to a 3-tier client/server architecture. This means that the application is
divided into three separate layers: a client layer, an application layer and a data
storage layer.

1.2.3 Description of PAX-NG
In PAX-E a lot of the business logic and the entire management of the GUI have
been placed on the client side, making it a tedious task to port clients to new
operating systems or to develop clients with customised user interfaces for
specific customers. In an effort to solve these problems, Ida is planning and
designing a new version of PAX called PAX-Next Generation (PAX-NG) based
on so called �thin� platform-independent clients. The clients are called �thin�
because all program logic has been moved to the server side. Basically the clients
only contain logic necessary for communicating with the server.
This means that a PAX-NG client could, and probably will, be run as an applet in
an ordinary web browser, such as Netscape or Internet Explorer. This enables
users of a document and case management system to log on to their system on a
web browser via an open network (such as the Internet).
The architecture of PAX-NG is still on a design level, but it is clear that the new
platform will be based on Java. The clients are Java-based and the server
applications are built as Enterprise JavaBeans (EJB) running on application
servers.

1.2.4 Security Requirements in PAX-NG
The main difference between PAX-E and PAX-NG from a security perspective is
that while PAX-E applications are run exclusively on private networks, thus
limiting security issues, PAX-NG applications on the other hand will possibly be

Error! Style not defined. Error! Style not defined. 3

run over a public network such as the Internet, which introduces a wide array of
possible security hazards. Since the majority of Ida�s customers are government
agencies with high security requirements, this might be a big problem.

1.3 Purpose
The purpose of this thesis is to investigate and evaluate what security services

exist to counter the security problems that are introduced in software systems
running in open distributed environments. The term security service is used in
this thesis to denote a service that provides a suite of algorithms for encryption,
authentication, integrity checks, and key exchange. The focus will be on systems
running in an Enterprise JavaBeans environment with the WebLogic application
server used to host the JavaBeans. The work includes a recommendation on what
security service would be suitable to use in PAX-NG.
The security aspect basically involves three sub-areas that are investigated
[Stallings 1999]:

• Confidentiality (making sure that information exchanged between two
parties is kept confidential and can not be intercepted by a third party).

• Authentication (verifying that the source of a communication really is the
source that it claims to be).

• Integrity (making sure that information exchanged between two parties can
not be altered by a third party).

1.4 Methodology
In this section the method used in the project for reaching an answer to the
general question given in the former section is presented. The larger problem has
been divided into several minor problem areas that can be focused on
individually. The general research method has been visualised in Figure 1 as an
action diagram.

4  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

Text

Text

Selection of criteria

Possible
criteria

Selected
criteria

Preliminary selection

Available
security services

Possible security
services

Selection of algorithms

Available
algorithms

Selected
algorithms

Theoretical evaluation
and selection

Test implementation

Selected
services

Test
results

Final conclusion

=activity

=information
Recommended
security service

Description of security services

Described
security services

Discarded
services

Theoretical result
of evaluation

Figure 1 Process description of project method.

As seen in Figure 1, the project can be divided into three initial problem areas.
One for selecting which criteria to use when selecting suitable security services,
one for making a preliminary selection and writing a description of available
security services and one for selecting specific algorithms that will be used in the
testing of one specific security service later on. After that we perform a

Error! Style not defined. Error! Style not defined. 5

theoretical evaluation of the services based on the selected criteria. This phase
results in a set of selected services, a set of discarded services and a theoretical
description of the services. The selected security services are implemented and
tested in test benches for evaluating the performance of the selected services.
Finally, the results from above are compiled and a recommendation of a security
service suitable for PAX-NG is presented. Each sub-area presented above is
discussed in the following paragraphs.

Selection of criteria

The overall purpose of the project is to make a survey of available security
services, evaluate them and finally select the more interesting ones for a closer
study. For this evaluation process to be as objective as possible, it is necessary to
initially identify what criteria the services should be judged upon. These criteria
will be selected after an extended study of the design specifications on PAX-NG.

Preliminary selection and description of services

After the survey of available security methods has taken place, it might be
necessary to discard some services right away, before they have been formally
evaluated according to the criterions mentioned above, because they seem just
too inappropriate. It would be overkill to perform such a formal evaluation on all
services. Descriptions of those services that were not discarded are presented.

Selection of algorithms

In the implementation phase of the project, one security service will be evaluated
to study the performance of individual encryption and authentication algorithms
(the service is tested in Test_Bench_JCE). This service supports a number of
algorithms, and to simplify the test process a few of the more interesting
algorithms are selected. To enable the selection of these algorithms we perform a
literature study on the theory available on information security.

Theoretical evaluation and selection of services

The security services that passed the preliminary selection are now evaluated
from a theoretical perspective based on the selected criteria. This evaluation
results in two sets of selected and discarded criteria. It also results in a theoretical
evaluation of the security services.

Test implementation

The security services that were selected are implemented and evaluated from a
performance perspective. Performance in this case only refers to processing time.
In the test phase the algorithms that were selected initially will be used in the
testing of one of the selected security services. The test phase ends with an
evaluation of the test results.

6  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

Final conclusion

The results from the theoretical and practical evaluation of the security services
are compiled and a single service is recommended for use in PAX-NG.

1.5 Target Group
The target group for this thesis are people with at least a basic knowledge in the
area of computer science and modern software development. The thesis is
intended as a guidance for a person responsible for deciding what specific
security service should be implemented in a large distributed software system
based on the Enterprise JavaBeans standard.

1.6 Demarcation
The following areas are outside the scope of this thesis:

Digital signatures

Digital signatures are similar to message authentication, but while message
authentication is used to protect two parties who exchange data from any third
party fabricating or altering the data, digital signatures are used to protect the two
parties from each other. Digital signatures provide a means of proving that a
message transfer really took place between the two parties. No party should be
able to deny it (this is often referred to as non-repudiation). Since this thesis is
limited to the study of security issues in an environment where two trusted
parties communicate over an unprotected network, the area of digital signatures
will not be covered in the thesis.

Denial of service

Denial of service is an attack on security where the use of a service (such as an
application server) is inhibited. This could be done by disabling the network or
simply by overloading it with messages or requests for service. This threat
belongs to the area of system or network administration and is not covered in the
thesis.

Access control

Access control applies security policies that regulate what a specific user can and
cannot do within a system. Access control ensures that users only can access
resources for which they have been given permission [Monson-Haefel 1999].
This service is a part of the Enterprise JavaBeans concept. However, since it

Error! Style not defined. Error! Style not defined. 7

belongs better to the area of system administration than to the area of network
security it is not covered in this thesis.

1.7 Reading Instructions
These reading instructions give an overview of the structure of the thesis and
describe which parts of the thesis that are essential reading for understanding the
work done.
Chapter 1 is essential reading for understanding the background for and purpose
with the project. This chapter also presents a problem formulation.
Chapters 2 presents background theory on distributed systems that to some
extent might be familiar to the reader. Understanding the theory is essential for
understanding the work done in the latter chapters of the thesis.
Chapter 3 presents background theory on security.
Chapter 4 presents the result of a survey of available security services. An
overview of the services is given and the services that will be implemented in the
test phase are selected. Since the selected services will be treated further in
Chapter 5, it is necessary for the reader to be familiar with them.
Chapter 5 covers the test phase. The design of the test benches that were used is
presented together with test results and an evaluation of the test results. The
chapter is essential reading since the testing and evaluation of selected security
services is an essential part of the project.
Chapter 6 presents the conclusions drawn in the research project. This is an
essential part of the thesis and should be read.
Chapter 7 presents some recommendations on further work. This is intended for
whoever might be interested, but is not essential reading.
Chapter 8 lists the references used in the thesis.
Appendix A gives a brief description on some of the terminology used in the
thesis.
Appendix B presents a theory research on the encryption and authentication
algorithms referred in the thesis. It is not essential reading, but might still be
interesting for the reader.

8  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

2 Theory on Distributed Systems
This chapter gives the necessary background theory in the area of distributed
systems needed to fully understand the work done in this project.

2.1 Distributed Environments
In the early years in the computer history, when big mainframe computers were
used to carry out computations, computer programs used to be big and
monolithic and all data processing was carried out on one computer. Later on,
these monolithic programs were divided up into a client part and a server part
running on separate machines according to the client/server model and even later
on divided into a 3-layer architecture. These models are discussed below.

2.1.1 Traditional Client/Server Model
The traditional client/server model is a design model that became popular with
the appearance of Local Area Networks (LAN) for PCs in the 1980s. The model
enables a group of users working in a distributed local environment to share
common resources, such as printers and databases (see Figure 2). This new
model was a big step forward since the PCs finally came out of their isolation
[Andrade et al. 1996].
The traditional client/server model is based on a 2-tier architecture with an
application running on the client side and for example a DBMS running on the
server side. Network security was not a big problem since the systems were
running on private LANs.

Database
server

Client
work-
station

Client
work-
station

Client
work-
station

Application
server Printer

LAN

Figure 2 An example client/server environment.

2.1.2 3-Tier Architecture
The 3-tier architecture is a design philosophy that was introduced in the early
1980s for mini-computers. The 3-tier architecture is based on the traditional
client/server model with the addition of an extra tier, a middle tier, as seen in
Figure 3. Troy Kauffman gives the following description:

Error! Style not defined. Error! Style not defined. 9

�The key characteristic of a 3-tier client/server architecture is the
separation of a distributed computing environment into presentation,
functionality and data processing components, such that there is a well-
defined interface between each component, and the software used to
implement each component can be replaced easily.� [Kauffman 1997]

Presentation
tier

Functionality
tier

Data-storage
tier

Client appl.
with GUI

Application
server DBMS

Figure 3 3-Tier Architecture.

Following is Kauffman�s description of the three tiers:

• Presentation tier: This tier interfaces with the user. It consists of a thin client
running the GUI and maintaining a connection with the middle-tier.

• Functionality tier: This is where the actual data processing occurs. The tier
consists of applications running on a so-called application server.

• Data-storage tier: This is where the data is stored and managed. The tier
consists of a database management system.

Benefits

A 3-tier architecture has many benefits over the 2-tier architecture [Kauffman
1997]. One of the most obvious benefits is that system administration is less
complex since the applications can be centrally managed on a server. All
business logic is running on a central application server and only a client
maintaining the GUI is distributed to the users. For this reason, new versions of
an application need not be distributed to the users.
The architecture guarantees excellent scalability since application components
can be distributed on many servers. When a system grows out of itself, it is quite
easy to install a new server to increase overall performance by load balancing
The new server can then work side by side with the old servers [Thomas 1998].
These factors result in savings in system administration costs and software
development costs. It also results in an increased level of security.

Security

It is easier to maintain a high security profile in a 3-tier architecture, since the
system is divided into a few clearly separated layers where the communication
between the layers can be easily monitored and secured via for example
encryption and authentication. Mission critical data can be kept safe at a secure
level behind a firewall. Authentication when accessing the data-storage is also

10  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

easier to achieve because only a few application servers need to be identified by
the data-storage server [Monson-Haefel 1999].

The future for 3-tier architecture

The reason why the traditional 2-tier client/server model became so widespread,
is probably because of the high quality of the tools that were designed to ease
splitting the client from the data storage; tools such as DBMSs, remote SQL,
ODBC, and so on. Over the past few years, the development of application
servers and related software has accelerated. Since application servers are to the
new functionality tier what a DBMSs are to the data storage tier, this should
indicate a prosperous future for the 3-tier model as well [Monson-Haefel 1999].

2.2 Component Transaction Monitors
Component Transaction Monitors (CTM) play an important roll in this project
and are discussed below. CTMs can be seen as a hybrid of TP monitors and
ORBs, which are also discussed below.

2.2.1 TP Monitors
TP monitors (transaction processing monitors) have been around for some 30
years and provide reliable server platforms for distributed mission critical
applications. Originally TP monitors were used as operating systems for large
distributed business systems written in COBOL where the business logic was
running on a central mainframe. Today, TP monitors such as Tuxedo from BEA
Systems are still in use for managing the functionality tier in 3-tier systems.
Vogel and colleagues [1999] give the following definition of a TP monitor:

�An operating system that specialises in creation, execution and
management of transaction processing applications.�

To call the TP monitor an operating system might sound strange, but it gives a
good description of what it actually does. The TP monitor is a resource manager
that makes the best use of available resources, such as network and database
resources. This resource management is needed to avoid overloading the system
when the number of requests from clients becomes large.
The business logic in TP monitors is made up of procedural applications that are
accessed over network through remote procedure calls (RPC).

2.2.2 Object Request Brokers (ORB)
TP monitors have proven very useful for procedural-based applications. After the
advent of object-oriented programming, systems for distributed object
technologies were developed, such as Java RMI and CORBA. These systems are

Error! Style not defined. Error! Style not defined. 11

called object request brokers (ORBs) because they provide a communications
backbone for objects. It should be stated that the communication infrastructure in
CORBA is more elaborate then in Java RMI, but they both operate according to
the same principle.
As opposed to TP monitors, ORBs can not be called operating systems, because
they do not provide services for handling concurrency, transactions, security,
persistence, resource management, and fault tolerance. All these services have to
be implemented in the applications by each and every application programmer,
which has proven to be an enormous task.

2.2.3 Component Transaction Monitors (CTM)
Component transaction monitors (CTM) are a hybrid of TP monitors and ORBs.
They combine the best from two worlds and end up with a platform for
distributed object-based applications that provide services for concurrency,
transactions, resource management, fault tolerance, persistence and security
[Monson-Haefel 1999].
TP monitors have been around for a long time so the technology behind them is
rock solid. Inheriting this technology makes CTMs suitable for running mission-
critical systems.
CTMs are often referred to as application servers, and this term will be used in
this thesis.

2.3 Java RMI
Java RMI is a standard developed by Sun Microsystems for distributed
computing in a Java environment [Sun/1 1999]. At the most basic level, RMI is
Java�s remote procedure call mechanism (RPC), in that it enables a client
application to execute program code residing on a server. However, whereas the
RPC mechanisms only allow the client to make subroutine calls on the server,
RMI introduces object-oriented features. RMI can pass full objects as arguments
and return values instead of just predefined data types.
RMI uses a stub-skeleton mechanism for providing an easy way for a client
application to call a method in a remote server object. When a client application
wants to invoke a method of a remote server object, it calls a local surrogate
object called a stub. The stub is an empty object with an interface identical to the
remote object that handles all network communication between client and server.
For the client application it is just as if the remote object was running locally. A
corresponding surrogate object on the server side called a skeleton has a similar
purpose. It relays the call from the stub in such a way, that the server object
perceives it as being a local call. It should be said that the stub and the skeleton

12  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

must have been compiled and distributed before the remote method invocation
can take place.
To enable the client application to locate a remote object, an RMI registry on the
server is maintained. Stubs use the RMI registry to lookup and get reference to
remote objects. Before the lookup take place, the server object must therefore
have registered itself.

2.4 WebLogic Application Server
The WebLogic application server developed by BEA Systems is one of the
leading component transaction monitors on the market. It provides an integrated
platform for distributed 3-tier computing. WebLogic supports a large variety of
server component standards, such as Enterprise JavaBeans, RMI, CORBA and
Tuxedo components. The WebLogic server provides a platform for storing and
managing these server components, as discussed in section 2.2.3. It also adds
services for security management (such as authentication and access control) and
database connectivity [BEA/1 1999].
The server is built to handle large volumes of transactions and to be easily
scalable. This is accomplished by using transactional techniques such as resource
pooling and caching. Resource pooling is a technique for making the best use of
database resources. Instead of letting each application connect to databases on
their own initiative, each database transaction is relayed via a resource pool,
managed by the server. The pool manages only a few database connections and
handles transactions by bundling them into larger database requests.
Figure 4 below gives a schematic overview of the WebLogic application server
model. The diagram exemplifies storage of two forms of server components:
RMI classes and Enterprise JavaBeans. Java clients use JNDI (Java Naming and
Directory Interface) to gain access to server components. JNDI is a registry
maintained by the server that keeps track of all components stored on the server.
When connecting to the WebLogic server, Java clients establish a connection
using BEA�s RichSocket� protocol, which multiplexes various protocols over a
single network socket connection. A RichSocket� connection can carry all kinds
of WebLogic traffic simultaneously; for example JDBC traffic, RMI traffic and
WebLogic Event traffic [BEA/2 1999].

Error! Style not defined. Error! Style not defined. 13

Figure 4 WebLogic application server model. From [BEA/1 1999].

2.5 Enterprise JavaBeans
Enterprise JavaBeans (EJB) is a specification from Sun Microsystems that sets
forth a distributed component model for the Java programming language. EJBs
simplify the process of setting up a distributed system.

2.5.1 Overview
EJBs can be seen as the latest technology abstraction in the Java family, as they
provide an abstraction for component transaction monitors (CTM). As discussed
in section 2.2.3, CTMs are servers that are specialised at managing so-called
server-side components and managing services such as transactions, persistence
and security. Server-side components can be seen as standardised containers
placed on the server, containing the application code. Thus, a level of abstraction
is achieved as the application programmer only needs to have knowledge about
the development environment provided within the container, and the server
software only needs to know how to store and manage the containers [Monson-
Haefel 1999]. Because of this level of abstraction, EJBs can easily be moved
from one CTM to another, as long as they both follow the component model
standard specified by Sun. This is referred to as �Write Once, Run Anywhere��
portability [Thomas 1998].

2.5.2 Architectural Overview
The EJB architecture can basically be divided into three components: the
enterprise beans, which are the very objects that contain application code, the

14  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

EJB containers that manage the beans and the EJB server which manages the
containers [Monson-Haefel 1999].
Enterprise beans are program components that are stored in EJB containers and
that follow a specified interface that simplifies the distribution of application
code to servers. When an enterprise bean is deployed into the EJB container, two
interfaces must be specified by the developer [Thomas 1998]. The first one is the
remote interface, which intercepts all method calls from the client and implement
transactions, persistence and security services for the bean. The second one is the
home interface, which is accessible through JNDI and implements all lifecycle
services for the bean, such as services for creating, finding and removing
enterprise beans. See Figure 5 for an overview.

Enterprise Bean

EJB Remote
interface

EJB Home
interface

Client

EJB Container

create,
find,

remove

method
calls

Figure 5 Functionality of the EJB Container.

Central to the EJB architecture is the EJB container, which manages the beans
contained in it. For each bean the container is responsible for registering the
object, maintaining the remote interface for the object, creating and destroying
object instances, checking security for the object and co-ordinating distributed
transactions [Thomas 1998]. The EJB containers are themselves maintained by
the EJB server.
There exists two different kinds of enterprise beans used in different situations:
entity beans and session beans.

2.5.3 Entity Beans
Entity beans are objects with a persistent representation. This means that they are
stored in a database between sessions. To enable database storage, each entity
bean must have a unique identity, called a primary key. Each entity bean must
implement at least one find method, which is used by the client for locating
beans. An example of an entity bean is an object that represents a banking
account. The status of the bank account must be maintained between sessions,
thus persistence is required. [Monson-Haefel 1999]

Error! Style not defined. Error! Style not defined. 15

2.5.4 Session Beans
Session beans are objects that implement high-level services. As opposed to
entity beans, session beans are not persistent. Instead a new bean is instantiated
in every session. Session beans usually perform services on entity beans, but they
can also operate in isolation. An example of a session bean is an object that
provides services for depositing money and calculating interest on the banking
account bean described above [Monson-Haefel 1999].

16  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

3 Theory on Security
This chapter presents the necessary background theory in the area of computer
security needed to fully understand the work done in this project. First, however,
we give a motivation for the need of security services.

3.1 Motivation
Security issues in public networks, such as the Internet, have become an
increasing problem over the past years. As the use of Internet has increased, the
number of security violations has increased correspondingly. This is
demonstrated clearly in the statistics over security violations presented by the
network security organisation CERT. As shown in Table 1, the number of
security violations reported to CERT has more than doubled from 1998 to 1999
[CERT 2000]. Thus, it is necessary to implement adequate security services in
open distributed environments.
Table 1 Number of network security incidents reported to CERT.

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Incidents 252 406 773 1,334 2,340 2,412 2,573 2,134 3,734 8,268

3.2 Security Threats and Counter Measures
According to Stallings [1999] attacks on the security of a computer system in a
distributed environment can be divided into four different categories:
interruption, interception, fabrication and modification. The first category
involves the hindering of communication between two parties and is outside the
scope of this thesis. The remaining three categories of security attacks are
discussed below.

Error! Style not defined. Error! Style not defined. 17

(a) Normal flow (b) Interception

(c) Fabrication (d) Modification

=trusted

=non-trusted

Figure 6 Principal security threats [Stallings 1999].

Figure 6 above gives a schematic presentation of the principal security threats.
Figure 6 (a) displays the normal data flow from sender to intended receiver. The
remaining parts of the figure shows the security threats discussed below:

• Interception: An unauthorised third party (represented in dark grey) gains
access to transmitted data by wire-tapping the network. See Figure 6 (b). This
threat is discussed in section 3.2.1 below.

• Fabrication: An unauthorised party fabricates data and transmits it through
the network using the identity of a trusted party so that the receiver believes
that the source of the transmission is another than it really is. See Figure 6 (c).
This threat is discussed in section 3.2.2 below.

• Modification: An unauthorised party intercepts a message from a network
and modifies it before reinserting it into the network. See Figure 6 (d). This
threat is discussed in section 3.2.3 below.

3.2.1 Confidentiality
To counter the security hazards that interception of messages introduces,
confidentiality in the transmitted data is needed. This is accomplished by using
cryptographic algorithms. Basically cryptographic algorithms can be divided into
two distinct groups: symmetric-key algorithms and public-key algorithms
[Stallings 1999]. However, all algorithms work according to the scheme
presented in Figure 7. Plaintext is fed into the encryption algorithm where it is
converted into ciphertext before it is transmitted to the recipient. At the
recipient�s side the ciphertext is converted back to plaintext via a decryption
algorithm. Both the encryption and decryption algorithms take a key as input
[Schneier 1994].

18  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

Encryption DecryptionCiphertextPlaintext
Original
plaintext

Key1 Key2

Figure 7 Encryption and decryption.

Mathematically the process can be described as follows
 Ciphertext = E(Plaintext, key1)

 Plaintext = D(Ciphertext, key2)

where E denotes the encryption algorithm and D denotes the decryption
algorithm. For E and D holds that
 Plaintext = D(E(Plaintext, key1), key2)

Symmetric-key algorithms

A symmetric-key algorithm is an encryption algorithm that requires that both the
sender and the receiver of an encrypted message have access to the same key.
Thus, in Figure 7 Key1 and Key2 would be identical [Schneier 1994]. There are
generally no limitations on the design of symmetric-key algorithms, but in reality
most symmetric-key algorithms are block ciphers. The opposite of block ciphers
is stream ciphers. These two classes of symmetric-key algorithms are discussed
in section 3.4.

Public-key algorithms

A public-key algorithm is an encryption algorithm that enables two parties to
send encrypted messages to one another without sharing a common key. Each
party maintains two keys - one public-key and one private key. When for
example A want to send a secret message to B, he encrypts the massage using
B�s public-key. The message can then only be decrypted using B�s private key.
In Figure 7 Key1 would be B�s public-key and Key2 would be B�s private key.
[Schneier 1994]

One-time Pad is the only fully secure method

According to [Schneier 1994] the only fully secure method of encryption is to
use a one-time pad, that is, to use a key that meets the following three criteria:

• the key is completely random

• no part of the key is ever reused

• the key has the same length as the message that is to be encrypted.
The one-time pad algorithm is a symmetric-key algorithm, which means that the
sender and the receiver of a message need to have access to the same key. Off

Error! Style not defined. Error! Style not defined. 19

course, these criteria render the method more or less useless in real life.
However, in situations where one beforehand knows that a limited amount of
secret information will be transmitted from one point to another, and the
information is of such a kind that it would be devastating if it became public,
then this algorithm is useful. For this reason, the one-time pad algorithm is often
called �the diplomatic encryption algorithm.�

3.2.2 Authentication
The authentication service is involved in assuring that a message is authentic and
not fabricated. Authentic in this case means that the source of a message really is
the source that it claims to be. This service involves two actions. First, when a
connection is initiated the service must assure that the two participating parties
are authentic. Second, the service must assure that the connection is not
interfered in such a way that a third party can masquerade as one of the two
legitimate parties for the purpose of unauthorised transmission or reception
[Stallings 1999].

3.2.3 Integrity
The integrity service involves assuring that a message has not been modified
during transfer. This is often done by calculating a checksum of the message (for
example by using a hash function) and appending this checksum to the message
which is to be transferred. The recipient can then recalculate the checksum on
arrival and compare this with the checksum appended to the message. The
checksum that is appended to the message must be encrypted or in some way
depend of a secret key to prevent an unauthorised third party from changing it
after interception [Stallings 1999].

3.3 Level of Security
According to Olovsson [1992] there exists no absolutely secure systems. Instead
security can be measured on a continuous scale from 0 to 1 or from completely
insecure to totally secure. A secure system would then be defined as a system
where the intruder has to spend an unacceptable amount time or money in order
to make an intrusion.
Increased security most often results in increased costs for the system. The cost
for security is a combination of many factors, for example cost for decreased
system performance, cost for increased system complexity, cost for decreased
system usability, and increased maintenance cost. Thus, it is necessary to
determine an optimal level of security for each system, where you combine the
cost for the security measures and the expected gains from increased security.
See Figure 8 for the cost/security graph.

20  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

Optimal level
of security

Security level
highlow

Cost

Expected total
cost for violations

Cost for security
enhancing mechanisms

Figure 8 The cost/security graph. Based on [Olovsson 1992].

3.4 Symmetric-key Cryptography
As mentioned before in section 3.2.1, cryptography is a method used for
providing confidentiality in data transfer. Symmetric-key cryptography is by far
the biggest and most important area of cryptography. Symmetric-key algorithms
are used when large amounts of data needs to be encrypted, as opposed to public-
key cryptography which is used for encrypting very limited amounts of data such
as session keys. In this chapter two kinds of symmetric-key algorithms will be
discussed: block ciphers and stream ciphers.

3.4.1 Block Ciphers
Block ciphers are the most widely used type of symmetric-key algorithms. Block
ciphers are a group of ciphers that encrypt data streams in blocks of for example
64 bits at a time. All block ciphers presented in this thesis are based on the
Feistel network.

Structure of a Feistel Network

The Feistel network was invented by Horst Feistel in 1973 [Feistel 1973], but the
structure of the cipher dates back to Claude Shannon�s legendary paper on
information security [Shannon 1949].
In a block cipher based on the Feistel network the data being encrypted in each
block is split into two halves. Iteratively an encryption function F is then applied
on one half of the data together with a sub-key in each round and the output from
F is XORed with the other half of the data. After each round the data is swapped.
See Figure 9 for an overview of the design of the Feistel network. In each round
a new sub-key is calculated from a master key using a sub-key generation
algorithm. This reuse of the master key is possible without weakening the

Error! Style not defined. Error! Style not defined. 21

algorithm because the Feistel network is designed to create a so-called avalanche
effect (i.e. a small change in the plaintext or the key produces a significant
change in the ciphertext).
The Feistel cipher algorithm is reversible, so for decryption the algorithm is
simple followed backwards.

F⊗

F⊗

F⊗

K2

K1

Kn

Round 1

Round 2

Round n

Figure 9 Principle design of a Feistel network.

Block Cipher Modes

Block ciphers can run in several different modes depending on if and how the
different cipher blocks in a message are chained. Four modes are worth
mentioning:

• Electronic Codebook Mode (ECB). In this mode each block is encrypted
separately. The name comes from the fact that a specific block of input data is
always encrypted into the same ciphertext (if the key is the same, that is).
This means that each block is treated separately and that blocks of data in the
middle of a message can be encrypted before the first blocks are encrypted.
This independence between the blocks introduces an integrity problem in
ECB since it is possible to cut-and-paste blocks between different messages
encrypted with the same key.

• Cipher Block Chaining (CBC). To solve the �cut-and-paste� problem in
ECB, CBC uses a chaining mechanism where the result from the encryption
of one block is fed back into the encryption of the next block. Thus, the
blocks of data in a message has to be encrypted linearly (from the first block
to the last block).

• Cipher Feedback Mode (CFB). With CBC encryption cannot begin until a
complete block of data is received. This is a problem in many network

22  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

applications, for example in terminals that must transmit one character at a
time. CFB enables the usage of smaller encryption blocks (typically 8 bits).

• Output Feedback (OFB). This mode is a variant of CFB with minor internal
changes.

Stallings [1999] gives the following list of typical application areas for each
mode: ECB is useful in transmission of single values (such as keys), CBC is
used for general purpose block-oriented transmission and authentication, CFB is
used for stream-oriented transmission and authentication and OFB is used for
transmission over noisy channels.

3.4.2 Stream Ciphers
A stream cipher is a cipher that handles messages of arbitrary size by encrypting
individual bits in a stream. This avoids the need to accumulate data into a block
before encryption, as is necessary in a block cipher. A conventional stream
cipher is very simple. A random key sequence is used to encrypt a message bit by
bit via an exclusive-OR operation. The ultimate stream cipher is the one-time pad
algorithm, discussed in section 3.2.1, where each bit in the key is used only once.
A more common approach is to use a random key generator, such as a Linear
Feedback Shift Register, for generating a seemingly random key sequence from a
shorter key [Fåk 1997].

3.5 Public-Key Cryptography
The advent of public-key cryptography was a big step forward in the field of
secure communication over public networks. Stallings [1999] describes it as �the
greatest and perhaps the only true revolution in the entire history of
cryptography.�

3.5.1 General Description
As mentioned earlier, public-key ciphers enable two parties to communicate
securely without sharing a common key. This is accomplished by using so called
one-way functions.

One-way functions

The notion of one-way functions is central to public-key ciphers. Bruce Schneier
gives the following description:

�A one-way function is a function that is relatively easy to compute but
significantly harder to undo or reverse. That is, given x it is easy to
compute f(x), but given f(x) it is hard to compute x. In this context, �hard�
means, in effect, that it would take millions of years to compute the function

Error! Style not defined. Error! Style not defined. 23

even if all the computers in the world were assigned to the problem.�
[Schneier 1994, p. 27]

An example of the characteristics of one-way functions can be seen in 2)(xxf = .
)(xf is simple to compute, but the inverse, xxf =−)(1 , is much harder.

A one-way function in itself is not very impressive - it can not be used in
encryption. What good would it be to encrypt a message if you could not decrypt
it! Instead in cryptography a special variant of one-way functions called trap-
door one-way functions is used. A trap-door one-way function is a function that
is easy to compute in one direction, and very difficult to compute backwards,
unless you know the secret trap door. The trap door enables one to easily
compute the function backwards.

Conceptual framework

Public-key algorithms rely on the usage of two keys, instead of just one key as in
conventional algorithms. One key is used for encryption and a different but
related key is used for decryption. For this reason these algorithms are sometimes
referred to as asymmetric-key algorithms. These algorithms have the important
characteristic that it is computationally infeasible to determine the decryption key
(which is kept private) given only knowledge of the cryptographic algorithm and
the encryption key (which is kept public).
The data that is to be encrypted is processed using a trap-door one-way function
together with the encryption key. It is then impossible to read the cipher without
access to the decryption key. The two keys are generated in such a way that they
complement each other. Thus, the decryption key works as a trap door [Schneier
1994].

Scenario

As a scenario of the usage of public-key algorithms, let us see how we can solve
the problem of establishing a secure channel between two persons, Alice and
Bob, who have never had any previous contact. If Alice wants to send a message
to Bob, this requires that both Alice and Bob maintain one public encryption key
E and a secret decryption key D. Alice encrypts the message using the function F
and Bob�s public-key EB [Stallings 1999].
 Ciphertext = F(EB, Plaintext)

When Bob receives the ciphertext he can easily decrypt it using his private key
DB and the same function F:
 Plaintext = F(DB,Ciphertext) = F(DB, F(EB,Plaintext))

24  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

3.6 Message Authentication
Message authentication is a procedure to verify the identity of the sender of a
message and to verify that the received message has not been altered during
transfer. Thus, it involves the sub-areas authentication and integrity. According
to Stallings [1999] message authentication mechanisms can be divided into three
classes:

• Message encryption

• One-way hash function

• Message authentication code (MAC).

3.6.1 Message encryption
According to Stallings [1999], in certain cases message encryption can provide
guarantees that a transmitted message has not been modified during transfer and
that the identity of the sender is correct. If a message transmitted from source A
to destination B is encrypted using a secret key that is shared only by A and B,
then clearly the recipient can be sure about the identity of the sender if and only
if the message follows a predefined standard. For example if the recipient knows
that the sender will send a message containing written text, then the predefined
standard is that the message should be readable. If the cipher has been modified
during transfer, then decryption will result in a message containing completely
random data, that is certainly not readable.
So far so good. However, suppose that the message can be any arbitrary bit
pattern. In this case there is no way to automatically determine that the message
is not a fake message and that it has not been tampered with. Thus, message
encryption in itself is not enough for providing message authentication [Stallings
1999].
In the discussion above it has been taken for granted that the sender and receiver
share a common secret key. However, the discussion applies equally well to a
situation where public-key encryption is used. In this case, A would encrypt the
message using his own secret key and B would decrypt the cipher using A�s
public-key. The same problems remain.

3.6.2 One-Way Hash Function
One way to overcome the problems mentioned above, is to calculate a so-called
message digest of the message and appending it to the end of the message. The
receiver can then automatically see if the message has been tampered with by
calculating a new message digest and comparing it with the appended digest,
because even if the message in itself contains random data the message digest
always follows a predefined format.

Error! Style not defined. Error! Style not defined. 25

A message digest is a function that �digests� a message and generates a fixed-
size code which is characteristic for the message. A one-way hash function is a
popular form of message digest. The hash function accepts a message as input
and generates as output a hash code, which depends on every single bit in the
message.
Encryption is then needed for the message digest to provide message
authentication Stallings [1999]. The following possibilities exist:

• Append the message digest to the message and encrypt the entire block. This
is used when both message authentication and message confidentiality is
needed.

• Encrypt only the message digest and append the encrypted digest to the
unencrypted message. This is used when message confidentiality is not
needed, but only message authentication.

3.6.3 Message Authentication Code
A message authentication code (MAC) is similar to a hash code (message digest)
in that it generates a fixed-size code that depends on the entire message. What
makes the MAC different from the hash code is that the generation of the MAC
involves a secret key. For that reason the MAC is also known as a cryptographic
checksum. Both the sender and receiver of a message need access to a common
secret key for generating and validating the MAC [Stallings 1999].
The cryptographic function used to generate the MAC has one important
difference from standard cryptographic functions in that it only works one way.
A standard encryption function can be used to generate a cipher from plain text
and then recreate the plain text from the cipher. However, in the case of a MAC
the sender and receiver perform the same operation. The receiver generates a new
MAC of the received message and compares this MAC to the appended one to
authenticate the message.
For mathematical reasons the feature that the cryptographic function does not
have to be reversible actually results in stronger encryption. Non-reversible
ciphers are also faster to generate than standard ciphers. For this reason, using a
MAC is preferable to using an encrypted hash code in situations where message
authentication is needed but not confidentiality.

3.7 Network Security
Since a majority of public networks are based on the TCP/IP protocol stack, the
discussion on network security in this chapter will be focused on this category of
networks. However, the concepts should apply to all kinds of networks that
follow the OSI standard reference model.

26  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

In a computer network based on the TCP/IP protocol the different security
services can be classified based on what level in the protocol stack the security
service is placed. Three possibilities exist: network layer security, transport layer
security and application layer security [Stallings 1999].

HTTPFTP

TCP, UDP

Security layer

IP

(b) Network layer
(NL) security

(c) Transport layer
(TL) security

(d) Application layer
(AL) security

HTTPFTP

TCP, UDP

Security layer

IP

HTTPFTP

TCP, UDP

Security layer

IP

HTTPFTP

TCP, UDP

IP

(a) Protocol stack
overview

AL

TL

NL

Figure 10 Possible locations of security services in the TCP/IP protocol stack.

Figure 10 above gives a schematic presentation of the possible positions for the
security layer in the protocol stack. Figure 10 (a) gives an overview of the
TCP/IP protocol stack. The different layers in the stack handle the network
communication on different levels of abstraction. It should be said that the lowest
protocol layers (the data link layer and the physical layer) which handle the low-
level physical network communication are not included in the figure. The
network layer is the lowest layer in the figure and it handles the sending and
receiving of IP packets. The transport layer is responsible for maintaining a
continuous and reliable connection between the two communicating parties. It
consists of two protocols, TCP and UDP, where TCP guarantees that all data sent
will arrive at the receiver and UDP does not. At the top is the application layer,
which provides services to applications. An example of such an application layer
service is file transfer [Tanenbaum 1996].
Below are the different security approaches [Stallings 1999]:

• Network layer security: In Figure 10 (b) a security layer has been placed
above the network layer. Since the security service is placed below the
transport layer it is transparent to the applications and secures all network
communication. Thus, because of the transparency there is no need to rewrite
the software in the system. The only available security service on this layer is
IPSec, which is discussed in section 3.7.1.

• Transport layer security: In Figure 10 (c) a security layer has been placed
above the transport layer. This has as a result that the security is transparent to
the user, just as with network layer security. The only available security
service here, to our knowledge, is an implementation of SSL, as discussed in
section 3.7.2.

• Application layer security: In Figure 10 (d) a security layer has been placed
above the application layer. Application specific security services are
embedded within particular applications. This is discussed in section 3.7.3.

Error! Style not defined. Error! Style not defined. 27

3.7.1 Network Layer Security
If the security service is placed in the network layer a so-called virtual private
network (VPN) can be created within a public and unprotected network (in this
case the Internet). In Figure 11 a virtual private network has been created
between two private LANs and one autonomous computer running for example a
web-browser.

Internet

LAN1 LAN2

Web
browser

=Virtual tunnel

Figure 11 Virtual private network within a public network.

The only possible network layer security is the IPSec standard, an extension of
the IP standard. The IPSec standard was proposed by the Internet Architecture
Board in 1995 to counter the prevailing security problems on the Internet. IPSec
ensures confidentiality, integrity and authenticity. The IPSec standard is
discussed more in detail in section 4.2.1.

3.7.2 Transport Layer Security
SSL (Secure Socket Layer) is a protocol proposed by Netscape for enabling
secure communications on the web. By origin SSL was designed with input from
the industry and thus soon become a de facto standard for network security.
The SSL security mechanism is placed on the transport layer, which have the
result that all network communication within a session1 is secured. SSL has three
security aims [Stallings 1999]:
1. To authenticate the server and the client using public-key signatures and

digital certificates.
2. To provide an encrypted connection for the client and server to exchange

messages confidentially.
3. To ensure that messages are not altered in transfer.
To provide reliable end-to-end security all data sent within one session is
encrypted using symmetric-key cryptography and authenticated by generating

1 An SSL session is an association between a client and a server, created after handshake.
Several applications can run within one session.

28  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

and appending a MAC. Public-key cryptography is used to securely exchange a
session-key when the session is established.
The SSL standard includes support for a number of different algorithms for
encryption (such as DES, IDEA and RC4), authentication (such as MD5 and
SHA-1) and key exchange (such as RSA and Diffie-Hellman). A collection of
three such algorithms is called a cipher suite.
The SSL standard is not a single protocol, but rather a number of different
protocols [Freier et al. 1996]. The two more interesting protocols are:

• SSL Handshake Protocol: This protocol allows the server and the client to
authenticate each other and to negotiate what cipher suite to use when the
session is established. Key-exchange is also managed by this protocol.

• SSL Record Protocol: This is the main protocol that provide services for
confidentiality and message authentication.

Figure 12 shows the over all operation of the SSL Record Protocol. The Record
Protocol takes application data as input, fragments it into blocks of 16,384 bytes
or less, compresses each block, adds a MAC and performs encryption. Finally, an
SSL header is appended.

Application data

Fragment

Compress

Add MAC

Encrypt

Append SSL
record header

Figure 12 SSL Record Protocol operation [Stallings 1999].

Authentication in SSL

The way in which SSL authenticates messages is worth a discussion since it has
implications on the test phase. As mentioned earlier in chapter 3.6.2, a quite
sufficient method for authenticating a message and to guarantee message
integrity is to generate a hash code of the message, appending it to the message
and finally encrypting everything using a standard encryption algorithm.

Error! Style not defined. Error! Style not defined. 29

However, in SSL a different approach has been selected. Message authentication
is achieved by generating a so-called cryptographic checksum (or a MAC)
according to an SSL-specific algorithm (unofficially referred to as SSL-MAC).
The SSL-MAC algorithm uses an ordinary hash function for generating hash
codes but it also incorporates a secret key in the authentication process. The
operation can be simplified as follows:
1. Generate two keys from the secret key.
2. Append one of the keys to the message and generate a hash code of the lot

(using for example MD5 or SHA-1).
3. Append the other key to the hash code and generate yet another hash code of

everything. This new hash code is the cryptographic checksum.
If this approach to authenticate messages instead of just generating a simple hash
code is good or bad depends on weather the messages needs to be kept
confidential or not.

• If confidentiality is not required, then SSL-MAC is better than generating a
simple hash code, because the hash code has to be encrypted regardless on
whether the rest of the message is encrypted or not, and it is faster to generate
an SSL-MAC than to encrypt a hash code.

• If confidentiality is required then the opposite applies. If you generate an
SSL-MAC, append it to the message and then encrypt the lot, then you can
say that the checksum has been encrypted twice. This is inefficient.

3.7.3 Application Layer Security
Application layer security is embedded within a particular application. The
advantage of this approach is that the service can be tailored for specific needs of
a given application. The disadvantage is that it is time-consuming to introduce
new security mechanisms in an existing software platform, because parts of the
software has to be rewritten [Stallings 1999].
Application layer security is often achieved by implementing known encryption
and authentication algorithms directly into the code of an application. Even more
common is to use a precompiled package containing implementations of the most
useful algorithms and a clear API. An example of this is Java Cryptography
Extension (JCE) developed by Sun Microsystems. This package will be
presented in section 4.2.3.

30  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

4 Security Services
In this chapter the security services that will be implemented and tested are
selected. First the results of a survey of available security services are presented
and an initial selection is performed, weeding out the most unsuitable services.
The services that passed the initial selection are then presented in detail. After
that we select the criteria that the services should be evaluated upon, and finally
the services are evaluated theoretically based on the selection criteria.

4.1 Survey of Available Security Services
In this section the results of a survey of possible security services or ways of
attaining security are presented. A preliminary and informal selection is then
performed and presented.

Available services

As said in section 3.7, security services can be classified as network layer
security, transport layer security and application layer security depending on
what level in the protocol stack the security service is placed. The available
services are divided according to the following classes:

• Network layer security: The only available choice in this class is IPSec.

• Transport layer security: In this class two different implementations of SSL
3.0 can be found, namely WebLogic SSL and JSSE (Java secure socket
extension). TLS 1.0 (transport layer security) is also an option.

• Application layer security: In this class we can see three possibilities for
implementing security. The first possibility is to use JCE (Java cryptography
extension) from Sun Microsystems, which is a ready to use package of
algorithms. The second possibility is to implement cryptography algorithms
by hand and include the code in the software. The third possibility is to use
the SESAME security system.

Preliminary selection

At this point JSSE (which is a Java implementation of SSL) can be discarded
before a formal evaluation. The reason for this is that JSSE is impossible to
implement in the test environment. It has earlier been decided that the tests will
be based on the WebLogic server. This server works as an integrated
environment making it is impossible to introduce a new transport layer security
service.
TLS 1.0 is basically the same as SSL 3.0, but with a different name. Therefore
this service is discarded.

Error! Style not defined. Error! Style not defined. 31

We can also discard the second one of the possible application layer security
services, that is, to implement the algorithms by hand and include the code into
the software. This method is simply too tedious and would hardly work in PAX-
NG.

4.2 Description of Security Services
In this section the four candidate services (IPSec, WebLogic SSL, JCE, and
SESAME) are presented.

4.2.1 IPSec
The main work on IP Security begun in 1994 when the Internet Architecture
Board (IAB) issued a report entitled �Security in the Internet architecture� [RFC
1636]. The report presented a survey of the prevailing security problems on the
Internet and identified key areas for necessary security mechanisms.
In 1995 the Internet Engineering Task Force (IETF) published five proposals of
security-related standards. These standards were then implemented as the IP
Security protocol (IPSec) standard in [RFC 2207]. IPSec was designed to work
with both the current version of the Internet Protocol, IPv4, as well as with the
future IPv6. IPSec provides similar services as SSL, but at the network level, in a
way that is completely transparent to the applications [OpenBSD 2000].
To avoid IPSec from becoming obsolete and useless as algorithms for encryption
and authentication become out of date and unreliable, IPSec only defines the
mechanisms for security and specifies default algorithms. New algorithms can
then be introduced without affecting other parts of the IPSec standard. The four
security mechanisms in IPSec are [Stallings 1999]:

• Security Association

• Key Management

• Authentication

• Encryption.
Each of these four mechanisms is described below.

Security Association

A Security Association (SA) is a one-to-one relation between the sender and the
receiver of data. The SA is used for storing security-related information such as
information about algorithms, sequence numbers, keys, and so on. A full list of
SA parameters can be found in [RFC 1825].

32  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

Key Management

The key management portion of IPSec involves generation, distribution and
management of keys. The IPSec architecture supports two types of key
management:

• Manual: A system administrator manually configures each system with its
own keys. Practical for small static environments.

• Automated: An automated system enables the on-demand creation of keys.
Suitable for large distributed systems.

Authentication

IPSec specifies the use of an Authentication Header (AH) as a mechanism for
providing strong integrity and message authentication for IP packages [RFC
1826]. The AH may also be used as a mechanism for providing non-repudiation
if a public-key cryptographic algorithm, such as RSA, is used. It should be
mentioned that IPSec does not provide user-to-user authentication, only machine-
to-machine authentication.
The default algorithm specified by IPSec is HMAC with MD5 or SHA-1 (both
combinations has to be implemented). MD5 is generally considered to be faster
than SHA-1, but SHA-1 offers a higher level of security [Stallings 1999]. AHs
can operate in two different modes: transport mode and tunnel mode. In both
cases the entire packet is authorised.
For transport mode the AH is inserted after the original IP header and before
the IP payload as shown in Figure 13 (a).
For tunnelling mode the entire IP packet is inserted into the payload of a new IP
packet. The AH is then placed after the new IP header but before the old header
as shown in Figure 13 (b).

AH TCPOrig IP
header DataIPv4

Authenticated

AH TCPOrig IP
header DataIPv6

Authenticated

Ext
header Dest

AH TCPNew IP
header DataIPv4

Authenticated

AH TCPNew IP
header DataIPv6

Authenticated

Ext
header

Ext
header

Orig IP
header

Orig IP
header

(a) (b)

Figure 13 Modes of AH authentication: (a) Transport mode and (b) Tunnel mode.

Error! Style not defined. Error! Style not defined. 33

Encryption

IPSec specifies the use of the Encapsulation Security Payload (ESP) extension
header for encryption of IP packets. More information on the format of the ESP
header can be found in [RFC 1827].
Support for many different security algorithms (such as 3DES, Blowfish and
IDEA) have been included. The default encryption algorithm is DES in Cipher
Block Chaining mode (CBC).
Just as with AH, ESP can be used in two modes: transport mode and tunnel
mode. See the description in the former paragraph for more information on these
two modes.

4.2.2 WebLogic SSL
WebLogic SSL is an implementation of SSL 3.0 as specified by Netscape
[BEA/2 1999]. As mentioned in section 3.7.2, SSL provide secure encrypted and
authenticated connections across insecure networks. The default algorithms used
by WebLogic SSL are RC4 for encryption, RSA for key exchange and MD5 for
generating message digests. WebLogic SSL supports certificates, for
authentication, generated by certificate authorities such as VeriSign, GTE
CyberTrust or Entrust.

4.2.3 JCE
Java Cryptography Extension (JCE) is part of a larger framework called Java
Cryptography Architecture (JCA) provided by Sun Microsystems for accessing
and developing security services for the Java platform [Pistoia et al. 1999].
Because of a number of export restrictions on cryptographic algorithms, Sun
broke the cryptography architecture into a set of interfaces included in JDK and
the implementation of these interfaces into JCE [Steel 2000]. The JCA was
designed around the following two principles [Sundsted 1999]:

• Implementation independence and interoperability: A developer must be
able to write applications without tying them too closely to a particular
algorithm. In addition, as new algorithms are developed, they must be easily
integrated with existing algorithms.

• Algorithm independence and extensibility: A developer must be able to
write applications without tying them to a particular vendor�s implementation
of an algorithm.

Designing a system of engines and providers satisfies these requirements. An
engine is an abstract representation of a cryptographic service that does not have
a concrete implementation [Pistoia et al. 1999]. A security service provider on
the other hand is a package that provides an implementation of some subset of
the cryptographic services. A schematic presentation of the basic functionality of

34  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

the provider concept can be seen in Figure 14. JCE can be seen as a wrapper
interface into which a service provider can be inserted, like a light-bulb into a
socket. All communication with the provider goes through JCE.
As mentioned above, JCA works as a framework for the collection of
cryptographic services placed in JDK and in JCE. More concretely, the division
works like this: Java 2 JDK store all interfaces for services involved in JCA and
implement services for generating message digests and digital signatures. All
services that are under export restriction, such as encryption, secret-key
distribution and MAC generation is implemented in JCE. Just as there are many
service providers that implement security algorithms, there also exist several
�clean room� implementations of JCE, apart from the standard implementation
from Sun. In this way it is possible to go around export restrictions.

JCE

Provider
Authenticated

cipher text

Non-
authenticated

plain text

Exchangeable service provider
Figure 14 Basic functionality of JCE. The JCE interface works as a wrapper around a

replaceable security service provider.

4.2.4 SESAME
SESAME (a Secure European System for Applications in a Multi-vendor
Environment) is a technology that has been developed to provide security to
client server systems [Ashley et al. 1999]. SESAME is similar to SSL in that it
provides a wide spectrum of services for secure network communications. The
large difference between the two is that SSL is situated in the transport layer and
SESAME is situated in the application layer. This has as a result that SSL in
theory is completely transparent for the user and SESAME is not. Thus, SSL
only provides security services on a machine-to-machine level and SESAME
provides services on a user-to-user level. This has as a result that the two
services, in theory, perform authentication differently. While SESAME
authenticates users, SSL only authenticates machines. However, SSL deviates
from the theoretical model and actually does provide user-to-user authentication.
Ashley and colleagues [1999] argue in their report that SESAME in theory is a
better choice than SSL, since it provides all services that SSL provides and more.
SESAME for example provides services for access control. Thus, SSL is
considered to be a subset of SESAME. See Table 2.

Error! Style not defined. Error! Style not defined. 35

However, since today�s browsers and web servers do not support any other
security service than SSL, implementing SESAME in a web-based system is
difficult. Ashley and colleagues [1999] therefore concludes that SESAME is best
suited for intranet solutions, handling internal communication within
organisations.

Table 2 Comparison between SESAME and SSL.
Security Service SESAME SSL
User Authentication Yes (Yes)
Data Confidentiality Yes Yes
Data Authentication Yes Yes
Access Control Yes No
Non-repudiation of Origin Yes No
Auditing Yes No

4.3 Identification and Selection of Criteria
To be able to perform an objective evaluation of the security services, we need to
initially identify what criteria the services should be judged upon.

Selected criteria

The following criteria have been selected:

• Performance: The security services need to be fast to be suitable for every
day use in a large system handling large amounts of data.

• Level of security: Since PAX-NG will be used for handling private and
possibly classified information, it is important that the selected security
services have a high security profile.

• Simplicity: The selected security services should be simple to implement and
maintain in the system. However, since PAX is quite a large software system
with many customers, this criterion is not crucial since the implementation of
security is such a small part of the software development process.

• Enterprise JavaBeans compatibility: The precondition for this project is to
evaluate ways to attain security in a distributed system based on the
Enterprise JavaBeans standard. Thus, the selected security services must be
implementable in an EJB environment.

Discarded criteria

From the original set of possible criteria, two were discarded because they did
not seem important. A criterion for evaluating the cost (as in price) for
purchasing a security service was discarded, because of the difficulties to
estimate this cost. The cost for such a purchase would probably be determined

36  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

through negotiation. A criterion for evaluating memory requirements was also
discarded with motivation that limited memory capacity could hardly be a
problem on today�s computers.

4.4 Theoretical Evaluation and Selection
In this section we present the results from a theoretical evaluation of the four
security services based on the selection criteria. A summary of the evaluation can
be found in paragraph 4.4.5.

4.4.1 Evaluation of IPSec
The performance of IPSec is good. In an evaluation of a Linux implementation
of IPSec by [Gautier 1999] transfer speeds around 35 % of normal (non-secured)
transfer speeds were reached when IPSec was activated.
According to a cryptographic evaluation of IPSec performed by Ferguson and
colleagues [1999], IPSec is a great disappointment from a security perspective.
They argue that the complexity of the system makes it difficult to evaluate
security weaknesses, and virtually impossible to keep security-critical errors out.
Further more they say that the complexities of the system combined with
exceptionally bad documentation makes it more or less certain for a systems
designer to create a system that does not implement IPSec the right way and thus
not achieve its security goals. Because of this we conclude that IPSec does not
meet the criteria on security and simplicity.
Since IPSec operate on the network level, it is completely out of scope of the
EJB applications programmer. Thus, we conclude that the security service is not
Enterprise JavaBeans Compliant.
Since IPSec did not meet three out of four criteria, we find it necessary to discard
it from the list of possible security services.

4.4.2 Evaluation of WebLogic SSL
We have not found any references examining the performance of SSL. For this
reason, the criterion can not be evaluated at this point.
After an extensive theoretical evaluation of the cryptographic strength of SSL
3.0, Bruce Schneier and David Wagner conclude that SSL 3.0 has an excellent
over all security profile [Schneier et al. 1997]. Even though there are some
minor security flaws, they do not constitute a reasonable threat to security. Since
WebLogic SSL implements SSL 3.0 the same should apply for it.
SSL is in itself designed to be easy to use in applications, as the security service
is placed at the transport layer and thus is virtually transparent to the application
programmer. Activating WebLogic SSL on the WebLogic server is simply done

Error! Style not defined. Error! Style not defined. 37

by specifying that a certain transport protocol (implementing SSL) should be
used. Thus, it can be stated that WebLogic SSL meets the simplicity criterion
with excellence.
Since the Enterprise JavaBeans standard supported by the WebLogic server, the
WebLogic SSL security service is Enterprise JavaBeans compliant.
WebLogic SSL meets the criteria with excellence. The service is therefore
selected for implementation and testing.

4.4.3 Evaluation of JCE
JCE does not contain any cryptographic algorithms in it self, so it is impossible
to evaluate the security and performance of JCE. Instead one should evaluate
the cryptographic strength of the algorithms that are implemented by the
individual service providers. However, there exist providers from trustworthy
companies, such as RSA, so we consider the security criterion met, yet with
some hesitation. For the same reason it is impossible to evaluate the
performance of JCE.
JCE has a well-defined, straightforward interface and is rather easy to use
[Sundsted 1999]. The simplicity criterion is met.
JCE is a Java standard developed by Sun Microsystems, just the same as the
Enterprise JavaBeans standard. JCE therefore meets the Enterprise JavaBeans
compliance criterion with excellence.
The JCE security service meets all criteria, even though with some hesitation
concerning security, and is therefore selected for implementation and testing.

4.4.4 Evaluation of SESAME
We have not found any references examining the performance of SESAME. For
this reason, the criterion can not be evaluated at this point.
Ashley and colleagues [1999] mentioned that SESAME provides a similar
cryptographic strength as SSL. Thus, the security criterion is met.
As mentioned earlier, today�s web browsers do not support any other security
service than SSL, and even though there is an interface for integrating SESAME
with a web browser, GSS-API, this is rather difficult to do. Since the idea is that
it should be possible to run PAX-NG clients on web browsers, we consider that
the simplicity criterion is not met.
We have not been able to determine weather SESAME is Enterprise JavaBeans
compliant or not.
Since the security service did not meet the simplicity criterion and there were
some uncertainty concerning EJB compliance, we decide to discard SESAME as
an option.

38  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

4.4.5 Summery
Two of the security services, WebLogic SSL and JCE, were selected as they
comply with all the criteria mentioned earlier. IPSec and SESAME were
discarded, as they did not meet all criteria.
These two security services will be implemented and their performance evaluated
in the next chapter.

Error! Style not defined. Error! Style not defined. 39

5 Testing and Evaluation
This chapter describes the testing phase of the project. After a general overview
of the objectives with the tests, each test bench that is used for testing the
selected security services is presented thoroughly. Finally the test results are
presented, together with a discussion of the validity of the measurements and an
evaluation of the test results.

5.1 Test Objectives
The objective of the tests was to evaluate the performance2 of two selected
services for achieving secure communication between a client and a server in a
distributed environment. The two selected services are WebLogic SSL and Java
Cryptography Extension (JCE). In JCE we specifically tested four encryption
algorithms and two algorithms for generating message digests. The selection of
these algorithms is presented in section 5.3.

5.2 Test Benches
This section presents the test benches that we developed in this project for testing
and comparing the two selected security services.

5.2.1 Overview
Since the goal of this project was to investigate security issues in a distributed
Enterprise JavaBeans (EJB) environment, our first step in the implementation
phase was to develop a simple test bench implementing the EJB standard. This
test bench was then cloned into two new test benches, which were then
separately developed further to introduce the two selected security services. See
Figure 15 for an overview. In the figure, the boxes represent the test benches and
the two shapes that make up each box symbolise the client application and EJB
pair that makes up each test bench.
Thus, each test bench is built as a client/EJB pair, where the business-logic is
running as an EJB on a WebLogic application server, and the client application
consists of the GUI and logic necessary for establishing communication between
the client and the EJB. It should be mentioned that the application server and the
client are running as two processes on the same computer, so the test results are
not affected by network performance.

2 Performance in this case refers to processing time solely.

40  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

testApp

MrBean

testAppSSL

MrBean

testAppJCE

MrJCEBean

Test_Bench_One

Test_Bench_JCETest_Bench_SSL

Figure 15 Development of test benches. The original Test_Bench_One is cloned into two

new test benches, which implement security services.

5.2.2 Test_Bench_One
The functionality of the first test bench is very simple. The client application,
called testApp (see Figure 16 for a screen-shot) requests services from a simple
EJB called MrBean that runs on the application server.

Figure 16 Screen-shot from testApp.

The test bench simulates data transfer between the EJB and the client and
provides services for measuring and calculating transfer speeds. In three text

Error! Style not defined. Error! Style not defined. 41

fields in the client-application the user enters parameters that control the
simulation. Two parameters control the size of the test data blocks and the
number of blocks that should be sent within one test iteration. The third
parameter controls the number of iterations the simulation should be run. An
iteration begins and end with starting and stopping the timer. Within one
iteration one or more blocks of test data is transmitted. The purpose of running
the simulation many times is to get good mean values since measured transfer
times differ between simulations. The test data used consisted of a string with the
character A repeated a certain number of times.
Figure 17 shows the call structure between testApp and MrBean. Only one
iteration is demonstrated, but in reality the calls within the dashed lines (one
iteration) should be repeated a large number of times. MrBean provides the
following services to the client:

• create() � Establish connection with the application server and initialise the
bean.

• initialiseData(int length) � Generate test data and store it in the bean.
In the test process the same test data is then reused to save time.

• initialiseTimer() � Start the timer.

• getData() � Return test data (in other words a message).

• stopTimer() � Store stop time.

• getTimeElapsed() � Calculate and return time elapsed (stop time minus
start time).

• getTransferSpeed() � Calculate and return transfer speed.

42  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

One
iteration

testApp MrBean

Figure 17 Call structure between testApp and MrBean in the first test bench.

5.2.3 Test_Bench_SSL
The functionality of this test bench is identical to the original Test_Bench_One
with the only difference that the communication between the client application
and the EJB is secured through WebLogic SSL. This security service is provided
by the WebLogic server and is simply activated by specifying that a specific
protocol should be used in the communication between the client-application and
the server. Because of this we could reuse MrBean and simply modify the client-
application (the new client-application was called testAppSSL). The GUI was the
same as for the original Test_Bench_One (see Figure 16), and the call structure
between testAppSSL and MrBean was identical to the call structure between
testApp and MrBean (see Figure 17).

Error! Style not defined. Error! Style not defined. 43

5.2.4 Test_Bench_JCE
This test bench is based on the original Test_Bench_One. The functionality is the
same, but several services have been modified to support security. The new client
application and EJB are called testAppJCE and MrJCEBean and they both
implement the Java Cryptography Extension (JCE). Secure communication is
achieved by generating and appending a message digest to the test data and then
encrypting everything. This is similar to the SSL standard (see 3.7.2). The
message digest ensures message integrity and encryption ensures confidentiality.
The algorithms that were tested are presented in section 5.3.
The GUI is almost the same as in the other test benches, with the addition of two
drop-down menus for selecting which encryption algorithm and message digest
to use. See Figure 18 for a screen-shot.

Figure 18 Screen-shot from testAppJCE.

Figure 19 show the call structure between testAppJCE and MrJCEBean. As
before, only one iteration is demonstrated. MrJCEBean provides the following
services to the client:

• create() � Establish connection with the application server and initialise the
bean.

44  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

• initialiseSimulation(int length, String algName, String

digestName, int algKeyLength) � Generate test data, initialise cipher and
message digest objects and generate and return a session key.

• initialiseTimer() � Start the timer.

• getData() � Return the encrypted test data with a message digest appended
to it.

• stopTimer() � Store stop time.

• getTimeElapsed() � Calculate and return time elapsed (stop time minus
start time).

• getTransferSpeed() � Calculate and return transfer speed.

One
iteration

testAppJCE MrJCEBean

Figure 19 Call structure between testAppJCE and MrJCEBean in Test_Bench_JCE.

Error! Style not defined. Error! Style not defined. 45

5.3 Selection of Algorithms
In this section we present a list of available and selected algorithms for
encryption and generation of message digests that were used in Test_Bench_JCE.
The security service that was tested on Test_Bench_JCE provided many different
security algorithms, and to simplify testing we selected to only test half of them.
The algorithms were selected to represent the diversity of algorithms.

Encryption algorithms

The following ciphers were available: DES, 3DES, IDEA, RC2, RC4, RC5, and
Blowfish.
DES and IDEA are among the most well known block ciphers around, so these
were selected automatically. The stream cipher RC4 is known for its high
performance and was selected for this reason. Blowfish is the newest block
cipher of the ones available and was selected for this reason. 3DES was
discarded since it is so similar to DES (in fact, it is DES, repeated three times).
RC2 and RC5 were also discarded since they do not provide any features that the
other selected algorithms do not.
These selected algorithms are studied in detail in appendix B.1.

Message digest algorithms

The following algorithms for generating message digests were provided: MD2,
MD5, SHA-1, and RIPEMD-160.
MD5 and SHA-1 are the most well known algorithms and were selected for this
reason. RIPEMD-160 was discarded because it is not commonly used. MD2 was
designed in 1989 and are for this reason optimised for 8-bit machines. Therefore
it was discarded.
These selected algorithms are studied in detail in appendix B.3.

5.4 Test Environment
The tests were conducted on a Pentium-II with 128 MB RAM running Windows
NT 4.0. WebLogic 4.5.1 from BEA was used as application server. Visual Café
3.0c using JDK1.1.7B was used to develop the test benches and the client
applications were also run from Visual Café. The fact that the client applications
were run from Visual Café and not from a stand-alone Java run-time
environment, might have influenced the test results. It is probable that we would
get higher transfer speed measurements, because of increased memory
availability, under different test conditions. However, this is not significant, since
we were only interested in a relative comparison between different security
services.

46  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

JCSI 1.0 from the Australian research centre DSTC Pty Ltd was used as provider
of encryption and authentication algorithms. This is worth mentioning, since it is
possible that we would have got different test results if we had used a different
provider. We did try to find and install a second provider, but this proved
difficult. The few providers we found were either out of reach because of export
restrictions and licence fees or did not work properly in our test environment.
As mentioned before, the application server and the client application were run as
separate processes on the same machine, so the test results are not influenced by
network performance in any way.

5.5 Test Results
The results from the test series are presented in this section.

5.5.1 Measurements
On the three test benches we conducted a series of tests using test data blocks of
five sizes to see if the security services behave differently under different
conditions. The data sizes used was 1 byte, 512 bytes, 1,024 bytes, 10,240 bytes
and 100,000 bytes.
In the test series we always used the same number of iterations and the same
number of messages within each iteration in every test case where we tested a
certain block size. However there have been some differences between test cases.
Generally 200 iterations were used in each simulation and 100 messages were
sent within each iteration. When testing data blocks of size 100,000 bytes we
used 200 iterations, but only one message was sent in each iteration because of
the large processing time. For data blocks of size 1 byte, 100 iterations were used
and 1,000 messages were sent within each iteration.
On Test_Bench_JCE we tested the performance of the four encryption
algorithms separately and used MD5 for generating message digests. We also
tested using SHA-1 for generating message digests, but the processing time was
always longer for that algorithm. This conclusion is consistent with [Stallings
1999]. For this reason, we decided to terminate the test cases using SHA-1 and
only complete the test cases using MD5.
The results from the test series are presented in Table 3. The numbers presented
are transfer speeds in kilobytes per second.

Error! Style not defined. Error! Style not defined. 47

Table 3. Transfer speeds in kilobyte per second measured in the three test
benches. The values within parentheses are transfer speeds relative to the speeds
measured on Test_Bench_One.

Size of test Test_Bench Test_Bench
data blocks One SSL DES IDEA Blowfish RC4

100,000 bytes 3488 (100 %) 1007 (29 %) 286 (8 %) 399 (11 %) 341 (10 %) 528 (15 %)
10,240 bytes 2857 (100 %) 877 (31 %) 286 (10 %) 405 (14 %) 341 (12 %) 543 (19 %)
1,024 bytes 901 (100 %) 353 (39 %) 218 (24 %) 291 (32 %) 249 (28 %) 351 (39 %)
512 bytes 472 (100 %) 203 (43 %) 169 (36 %) 212 (45 %) 185 (39 %) 244 (52 %)
1 byte 1.07 (100 %) 0.48 (45 %) 0.77 (72 %) 0.80 (75 %) 0.78 (73 %) 0.81 (76 %)

Test_Bench_JCE (using MD5)

Figure 20 shows a diagram of the transfer speeds for the tested security services
presented in Table 3. The test results from the different encryption algorithms
tested in Test_Bench_JCE are presented separately. The test results are presented
as relative transfer speeds compared to the transfer speeds that were measured in
the original Test_Bench_One, that is, when no security service was activated. For
example, the diagram shows that the measured transfer speed when sending data
blocks of 100,000 bytes in Test_Bench_SSL are just below 30 % of the transfer
speed measured in the original Test_Bench_One.

Figure 20 Diagram showing the transfer speeds for different block sizes measured in
Test_Bench_SSL and Test_Bench_JCE relative to the transfer speed measured in
the original Test_Bench_One.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 byte 512 bytes 1,024 bytes 10,240 bytes 100,000
bytes

Test_Bench_SSL
DES
IDEA
Blowfish
RC4

48  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

5.6 Validation of Test Results
In this section we will try to evaluate the validity of the test results presented
above. We do this by focusing on some key areas that might have influence on
the test results.

5.6.1 Number of iterations and messages
As said in section 5.5.1 we did not use the same number of iterations and number
of messages within each iteration for all test series. These parameters differed for
test series using data sizes 1 byte and 100,000 bytes. Could this have effected the
test results? To check this we ran a few tests (with data size 1,024 bytes) using
different numbers of iterations and number of messages within each iteration.
The results showed no evidence that these parameters greatly effect the
performance of the security services. The only visible difference is that the
accuracy of the test results decline if the total amount of data sent (that is, data
size multiplied with number of iterations multiplied by number of messages) is
too small. And we can not see that that this could be a problem in the test cases
mentioned above.

5.6.2 Characteristics of the test data
To save time in the test initialising process in the test series, we did not use
random test data in the tests. Instead a simple string consisting of a selected
number of the character A was used as test data. Could this effect the test results?
To find out if the processing times of the security services depended on the
characteristics of the test data, we ran a number of validation tests where we used
both random and non-random test data. The test results were identical so we
conclude that the test results do not depend on the characteristics of the test data.

5.6.3 Key length
Does the key length used in a certain cryptographic algorithm effect the
performance of that algorithm? In other words, will we get different test results
for each algorithm if we use keys of different length?
The motivation to this question is that the security service included in the
WebLogic application server exists in two different versions that use the same
algorithms, but with keys of different length. One version supports strong
encryption with a 128-bit key and the other version supports a weaker form of
encryption with a 40-bit key (this due to United States export regulations). Since
we only tested the version with weak encryption (because of difficulties in
getting access to the other version) we wanted to know whether the key length
used did affect the performance.

Error! Style not defined. Error! Style not defined. 49

To answer this question we performed a validation test where we used two
algorithms that support keys with variable length (Blowfish and RC4) and tested
them in a separate JCE environment using keys of different length. The test
results showed clearly that the key length does not effect the performance of the
algorithms. This result is expected since the algorithms probably use an internal
key of fixed length and simply stuff the shorter external key with nonsense bits to
produce a longer key.

5.6.4 Providers
As mentioned in section 5.4, we only used one provider of encryption and
authentication algorithms in the test series. This can affect the validity of the test
results. However, we feel quite confident in our estimation that the test results
from a different provider�s algorithms could not have differed so much from the
present test results that it would affect our evaluation, since every provider
basically implements the same algorithms.

5.7 Evaluation of Test Results
The results from the test series showed that the evaluated security services
behave very differently depending on the size of the test data blocks used. The
test results presented in Figure 20 show that WebLogic SSL (evaluated in
Test_Bench_SSL) is faster than every algorithm tested in Sun JCE (evaluated in
Test_Bench_JCE) for data blocks of size one kilobyte or larger. JCE was faster
for data blocks shorter than one kilobyte.
With data of size one byte, the fastest algorithm tested on JCE (RC4) was 40 %
faster than WebLogic SSL. This difference is quite large and it would be
interesting to understand why Sun JCE reached transfer speeds that were so
much higher than those reached by WebLogic SSL for small data blocks.
Our first idea was that it might have to do with the activities that precede the
actual data encryption, authentication and transfer. These activities include
generating and distributing keys and preparing for encryption, authentication and
for the communication activities in general. However, since all these activities
are performed before the actual timing occurs, it is difficult to explain the
differences due to this. (For simplification, the test bench operations can be
summarised in the following steps: Initialisation, start timer, send data, stop timer
and calculate transfer speed.)
The explanation that seems most probable at this time has to do with the slight
difference on how authentication is performed in the two test benches. In
Test_Bench_JCE authentication is performed by simply generating a message
digest, appending it to the data block and encrypting everything. In WebLogic
SSL the data is authenticated by generating a cryptographic checksum,

50  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

appending it to the data block and encrypting everything. Since the checksum is
encrypted twice this results in some overhead. It is possible that this is more
visible when small-sized data blocks are used.
Despite the origin of the differences mentioned above, it is safe to say that
WebLogic SSL is the security service that displays the best over all performance.
This can be said with confidence knowing that the typical data blocks being
communicated between client and server applications exceed one kilobyte in
size. The usage of test data blocks of size one byte can be seen as being merely
of an academic interest.

Error! Style not defined. Error! Style not defined. 51

6 Conclusions
In this chapter we present the conclusions from both the theoretical and the
practical evaluation of available security services and provide a recommendation
for a security service that is most suitable to use in the PAX-NG software system.
In the theoretical evaluation, one of the selected services excelled over the others,
and this was WebLogic SSL. This service was reliable and showed an excellent
level of security. Further more, this service was simplest to implement of them
all.
The results from the performance evaluation of the implemented services are
more uncertain. The results showed that WebLogic SSL was the best service for
sending data blocks larger that one kilobyte in size and that JCE was the best
service for sending data blocks shorter than one kilobyte in size. However, in the
evaluation of the test results (section 5.7) we concluded that the data blocks that
will be sent within PAX-NG are most certainly larger than one kilobyte, and that
WebLogic SSL thus showed the best over all performance.
Since WebLogic SSL was selected as the best service in both the theoretical and
the practical evaluation, this is the security service that we recommend for
implementation in PAX-NG and also for implementation in similar distributed
systems.

52  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

7 Future Work
Following are some recommendations on future work.

Providers

In the test series on Test_Bench_JCE only one security service provider was
tested and evaluated. As mentioned earlier, this did probably not effect the
validity of the test results to such a large extent that we would have come to a
different conclusion if we had used some other service provider. However, this is
only our estimation. If possible the best thing would be to extend the test series to
include the testing of different providers. It is plausible that such extended testing
will become easier to perform in the near future, since the trend is that export
regulations on cryptographic services (which proved to be a problem) are being
relaxed.

Full-scale testing

Another item for future work would be to implement the selected security service
in a large-scale system and perform full-scale testing. Such a test was not
possible during the writing of this thesis since the target system, PAX-NG, only
exists as a design and conceptual idea. The best thing to do is of course to redo
all the testing on the target system, but as this is probably not feasible, the second
best thing would be to implement and evaluate the selected security service and
establish that response times are not unexpectedly long.

Internal system security

Many interesting questions on internal system security have come to our mind
when writing this thesis. One of these questions is to investigate what methods
exist for regulating access control (as mentioned in 1.5), i.e., to regulate what a
specific user can and can not do in a system. It would be interesting and useful to
evaluate how secure and reliable such access control methods really are.
A good idea for further work is also to evaluate the over all system security in
PAX-NG from a client perspective, for example to evaluate if attacks on security,
such as buffer-overflow attacks or TOCTTOU (time of check to time of use)
attacks, are possible.

Error! Style not defined. Error! Style not defined. 53

8 References
[Andrade et al. 1996] Andrade, J. M., Carges, M. T., Dwyer, T. J., Felts, S.

D., The Tuxedo System, Addison-Wesley Publishing
Company, Inc. 1996, ISBN 0-201-63493-7.

[Ashley et al. 1999] Ashley, P., Vandenwauver, M., Claessens, J., Using
SESAME to secure web based applications on an
intranet, Secure Information Networks, Proceedings of
the IFIP TC6/TC11 Joint Working Conference on
Communications and Multimedia Security, Belgium,
September 1999, pp 303-317.

[BEA/1 1999] Introduction to WebLogic Server 4.5, Version 1.0, BEA
Systems, Inc. 1999.
http://www.weblogic.com/docs45/intro/
index.html (Accessed 2000-05-16)

[BEA/2 1999] WebLogic Developers Guide, BEA Systems, Inc. 1999.
http://www.weblogic.com/docs45/classd
ocs/index.html (Accessed 2000-05-16)

[CERT 2000] http://www.cert.org/stats/cert_stats.
html (Accessed 2000-05-16)

[Edwards 1997] Edwards, J., 3-Tier Client/Server at Work, John Wiley
& Sons, Inc. 1997, ISBN 0-471-18443-8.

[Eriksson 1999] Eriksson, L., Master thesis: Security in Open
Distributed Environments, Linköping: Linköping
University, Department of Computer and Information
Science 1999, ISRN LiTH-IDA-Ex-99/60.

[Feistel 1973] Feistel, H., Cryptography and Computer Privacy,
Scientific American, May 1973.

[Ferguson et al. 1999] Ferguson, N., Schneier, B., A Cryptographic
Evaluation of IPSec, Counterpane Internet Security,
Inc. 1999.
http://www.counterpane.com/ipsec.html
(Accessed 2000-05-26)

[Freier et al. 1996] Freier, A., Karlton, P., Kocher, P., The SSL Protocol
Version 3.0, Netscape Communications, 1996.
http://home.netscape.com/eng/ssl3/ssl
-toc.html

[Fåk 1997] Fåk, Viiveke, Course notes for Cryptology, Dept of EE,
Linköping University, 1997.

54  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

[Gautier 1999] Gautier, Robert, J., Performance of the FreeS/WAN
IPSec Implementation, University of Wales, Computer
Science Dept, 1999.
http://tsc.llwybr.org.uk/public/repor
ts/SWANTIME/

[Kauffman 1997] Kauffman, T., 3-Tier Client/Server Environment Goals
and Specifications,
http://sandbox.aiss.uiuc.edu/3-
tier/goals.htm

[Monson-Haefel 1999] Monson-Haefel, Richard, Enterprise JavaBeans,
O�Reilly & Associates, Inc., 1999, ISBN 1-56592-
605-6.

[Olovsson 1992] Olovsson, T., A Structured Approach to Computer
Security, Technical Report No 122, Chalmers
University of Technology, 1992.

[OpenBSD 2000] OpenBSD, Using IPSec, document version 1.32, 2000.
http://www.openbsd.org/faq/faq13.html

[Pistoia et al. 1999] Pistoia, M., Reller, D. F., Gupta, D., Nagnur, M.,
Ramani, A. K., Java 2 Network Security 2nd ed., New
Jersey: Prentice-Hall Inc. 1999, ISBN 0-13-015592-6.

[RFC 1636] Security in the Internet Architecture, Braden, R., Clark,
D., Crocker, S., Huitema, C., IETF, 1994.

[RFC 1825] Security Architecture for the Internet Protocol,
Atkinson, R., 1995.

[RFC 1826] IP Authentication Header, Atkinson, R., IETF, 1995.

[RFC 1827] IP Encapsulating Security Payload, Atkinson, R.,
IETF, 1995.

[RFC 2207] RSVP Extensions for IPSEC Data Flows, Berger, L.,
O�Malley, T., IETF, 1997.

[Schneier 1994] Schneier, B., Applied Cryptography � Protocols,
algorithms, and source code in C, John Wiley & Sons,
Inc. 1994, ISBN 0-471-59756-2.

[Schneier/BF 1994] Schneier, B., The Blowfish Encryption Algorithm, Dr.
Dobb�s Journal, April 1994.

[Schneier et al. 1997] Schneier, B., Wagner, D., Analysis of the SSL 3.0
protocol, The Second USENIX Workshop on
Electronic Commerce Proceedings, USENIX Press,
November 1996, revised 1997.
http://www.counterpane.com/ssl.html

[Shannon 1949] Shannon, C., Communication Theory of Secrecy
Systems, Bell Systems Technical Journal, No. 4, 1949

Error! Style not defined. Error! Style not defined. 55

[Stallings 1999] Stallings, W., Cryptography and Network Security �
Principles and Practice 2nd ed., New Jersey: Prentice-
Hall Inc. 1999, ISBN 0-13-869017-0.

[Steel 2000] Steel, Christopher, Constructing a secure distributed
architecture, Java Report, January 2000.

[Sun/1 1999] Java Remote Method Invocation � Distributed
Computing for Java, Sun Microsystems, Inc., 1999.
http://java.sun.com/marketing/collate
ral/javarmi.html (Accessed 2000-05-16)

[Sundsted 1999] Sundsted, Todd, In Java we trust, Java World, January
1999.

[Tanenbaum 1996] Tanenbaum, A. S., Computer Networks 3rd ed., New
Jersey: Prentice-Hall Inc. 1996, ISBN 0-13-394248-1.

[Thomas 1998] Thomas, Anne, Enterprise JavaBeans Technology -
Server Component Model for the Java Platform,
Patricia Seybold Group, prepared for Sun
Microsystems, 1998.
http://www.java.sun.com/products/ejb/
white_paper.html

[Vogel et al. 1999] Vogel, A., Rangarao, M., Programming with
Enterprise JavaBeans, JTS and OTS, John Wiley &
Sons, Inc. 1999, ISBN 0-471-31972-4.

56  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

Appendix A: Terminology

A.1 Abbreviations
 3DES Triple-DES
 CTM Component Transaction Monitor
 DES Data Encryption Standard
 DBMS Data Base Management System
 EJB Enterprise JavaBean
 GUI Graphical User Interface
 Ida Ida Systems Ab
 IDEA International Data Encryption Algorithm
 IETF Internet Engineering Task Force
 IP Internet Protocol
 IPSec IP Security protocol
 JCE Java Cryptography Extension
 KDC Key Distribution Center
 LAN Local Area Network
 MAC Message Authentication Code
 Mbps Mega bits per second
 OSI Open Systems Interconnection
 PAX-E PAX-Enterprise
 PAX-NG PAX-Next Generation
 RFC Request For Comment
 RMI Remote Method Invocation
 RSA Rivest-Shamir-Adelman
 SSL Secure Socket Layer
 TP monitor Transaction Processing Monitor

A.2 Glossary
3-tier architecture A model for distributed computing that divides the

application into three separate layers: client-layer, server-layer and data
storage-layer. In a 3-tier architecture all the business logic and possibly
also logic for presenting a GUI is executed on the server.

Application layer A layer in the OSI reference model that hosts the
protocols that explicitly deals with network communication such as
HTTP, SMTP etc.

Asymmetric-key algorithm See Public-key algorithm.

Error! Style not defined. Error! Style not defined. 57

Avalanche effect A small change in the plaintext or the key in a cipher
algorithm produces a significant change in the ciphertext (for example
Feistel networks generate an avalanche effect).

Brute-force attack The method of breaking a cipher (when the encryption
algorithms is known) by testing all possible keys in the key-space.
Sometimes referred to as exhaustive key search.

Cipher text The output from a cryptography algorithm. A cipher holds the
characteristic that it stores some information in such a way that it should
be as difficult as possible for someone not intended to read the
information to do that.

Component Transaction Monitors (CTM) A combination of transaction
monitors and object request brokers (ORB) which are used for
maintaining server-side components in a distributed architecture.

Cryptanalysis The process of trying to decrypt a cipher without access to
the key.

Feistel network A Feistel network is a design principle for block ciphers.
The Feistel network alternates substitution and permutation in many
rounds to achieve confusion and diffusion of the plaintext.

Internet Engineering Task Force This is a non-profit organisation that
governs and proposes new standards on the Internet. See www.ietf.org

Network layer The layer in the OSI reference model that makes sure that
networks with different addressing and data packing schemes are able to
be interconnected. A common transport layer protocol is the Internet
Protocol (IP).

Open distributed environment A system running in an open distributed
environment is called an open distributed system (see that).

Open distributed system A system consisting of several different
applications running on different machines distributed geographically
and connected via a public network.

Open Systems Interconnection (OSI) reference model A theoretical
model proposed by the International Standards Organisation that presents
a standard protocol stack for interconnecting open systems. The model is
divided into seven layers, where each layer hosts one specific protocol.
The layers are: Physical layer, data link layer, network layer, transport
layer, session layer, presentation layer and application layer.

Public-key algorithm An encryption algorithm that enables two parties to
send encrypted messages to one another without sharing a common key.
Each party maintain two keys � one public and one private. When for
example A want�s to send a secret message to B, he encrypts the

58  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

massage using B�s public-key. The message can then only be decrypted
using B�s private key. For example RSA is a public-key algorithm.

Public network A computer network accessible for the public as opposed to
a private network that is exclusively accessible for a limited number of
people, for example employees within a company. Internet is an example
of a public network.

Plain text The opposite of cipher text.
Remote Procedure Call (RPC) A protocol that one program can use to

request service from another program located on a different computer in
a network.

Request For Comment Technical reports within the Internet Engineering
Task Force (the organisation that propose new standards within the
Internet) are called Request For Comment (RFC). These are available
online: www.ietf.org/rfc.html

Security service A service that provides a suite of algorithms for encryption,
authentication, integrity checks and key exchange.

Symmetric-key algorithm An encryption algorithm that requires that both
the sender and the receiver of an encrypted message have access to the
same key (for example DES and IDEA).

Transport layer The layer in the OSI reference model that provides end-to-
end communication, with error recovery and flow-control. A common
transport layer protocol is the Transport Control Protocol (TCP).

Error! Style not defined. Error! Style not defined. 59

Appendix B: Theory on Security Methods
This appendix presents an overview of the encryption and authentication
algorithms referred to in the thesis.

B.1 Symmetric-key Cryptography
The following is a description of four symmetric-key algorithms. That is,
encryption algorithms that require the two communicating parties to have access
to a common secret key. Four of the algorithms are block-ciphers and the fourth
is a stream-cipher.

B.1.1 DES
DES (Data Encryption Standard) is one of the more renowned encryption
algorithms. IBM developed DES in the early 1970s. In 1977 it was adopted a
standard for non-security classified information within the U.S. Government after
some modifications dictated by the U.S. National Security Agency (NSA).
Originally IBM proposed Horst Feistel�s encryption algorithm Lucifer [Feistel
1973] as a standard, but NSA argued against this and recommended IBM to
develop a new algorithm with a reduced key size from Lucifer�s original 112 bits
to 56 bits. Thus, you can say that DES is a relaxed variant of Lucifer.

Overview of the algorithm

DES is a block cipher based on the Feistel network. As mentioned above the key
size is 54 bits and the block-size is 64 bits. The algorithm is designed to combine
two principles of encryption: confusion and diffusion. This is done by attacking
the plaintext block in 16 different rounds as shown in Figure 21 and by using
both permutation and substitution in the encryption function. DES exhibits a
strong avalanche affect.

How safe is it?

Since its creation there has been questions about the level of security provided by
DES. It is a general opinion that the key size of DES was limited at 56 bits so
that the cipher would be strong enough to hold against security attack by
individual people but weak enough to enable big government agencies (such as
NSA) to break the cipher through brute-force attacks.
Because of the limited key-space it is today relatively simple to break a DES-
cipher if you have access to a big enough computational power. For example a
�10,000,000 machine can break a DES-cipher in 21 minutes [Stallings 1999].

60  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

Initial transposition

Iteration 1

Iteration 2

Iteration 16

32 bit swap

Inverse transposition

64 bit ciphertext

64 bit plaintext

56
bit
key

),(11 iii KRfL −− ⊗

32 bits
Li

32 bits
Ri

32 bits
Li-1

32 bits
Ri-1

(a) (b)

K1

K2

K16

Figure 21 DES. (a) General outline. (b) Detail of one iteration [Tanenbaum 1996].

How fast is it?

DES was originally designed to be implemented only in hardware, and is
therefore extremely slow in software.

3DES

Because of the relative weakness of DES, a new variant of DES called triple-
DES (3DES) has been proposed. In 3DES the plaintext is encrypted three times
using the ordinary DES algorithm with two or three different keys. Two keys
raises the cost of a brute-force attack to 2112 which is beyond what is practical
now and in a foreseeable future.

B.1.2 IDEA
IDEA (International Data Encryption Algorithm) was developed by Xuejia Lai
and James Massey in Switzerland in 1991 and is generally considered one of the
best and most secure block-algorithms. Moreover, it is not troubled with any
government interference, like DES. In recent years IDEA has been proposed as a

Error! Style not defined. Error! Style not defined. 61

replacement to DES. For example IDEA is used in the PGP-algorithm (Pretty
Good Privacy) for achieving mail secrecy.

Overview of the algorithm

Like DES IDEA is a block cipher based on the Feistel network. The design
philosophy behind the algorithm is one of mixing operations from different
algebraic groups. IDEA uses three different operations (exclusive-or, addition
modulo 216 and multiplication modulo 216) making cryptanalysis much more
difficult than with an algorithm such as DES, which relies solely on exclusive-or.
See Figure 22 for an overview of the algorithm.

How safe is it?

IDEA takes 64-bit blocks as input and the key size is 128 bits which should
protect it against brute-force attacks for a foreseeable future. An earlier version
of IDEA was said to be open for a cryptanalytic method called differential
cryptanalysis, but the presently available version of IDEA should be immune
against such attacks.

How fast is it?

IDEA is considered a relatively fast algorithm. Encryption speeds of 9 Mbps
should easily be achievable in software running on a modern PC [Tanenbaum
1996].

62  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

Iteration 1

Iteration 2

Iteration 8

Transformation

64 bit ciphertext

64 bit plaintext

(a) (b)

xK1 +K2 +K3 xK4

#

x +

+ x

#

K5

#

K6

#

Four 16-bit input blocks

Four 16-bit output blocks

+
x
#

16-bit addition modulo 216

16-bit multiplication modulo 216+1

16-bit EXCLUSIVE OR

#

Figure 22 IDEA. (a) General routine. (b) Detail of one iteration [Tanenbaum 1996].

B.1.3 Blowfish
Blowfish is a symmetric block cipher developed in 1993 by Bruce Schneier
[Schneier/BF 1994] and is by many described as the best security algorithm
available today. It is designed to have the following characteristics:

• Fast (Blowfish encrypts data on a 32-bit microprocessor at a speed of 18
clock cycles per byte)

• Compact (Blowfish can run in less than 5K in memory)

• Simple (Blowfish is easy to implement)

• Variable security level (The key size is variable from 32 bits to 448 bits).

Overview of the algorithm

Like the algorithms mentioned above, Blowfish is based on the Feistel network
with a block size of 64 bits. Unlike DES and IDEA in Blowfish the entire block

Error! Style not defined. Error! Style not defined. 63

(both the left and the right half) is effected in each round. There are 16 rounds in
the algorithm and the structure of one round is displayed in Figure 23. The
algorithm uses two primitive operations (addition modulo 232 and exclusive-or)
to make cryptanalysis more difficult.

+

+

S-box 1 S-box 2 S-box 3 S-box 4

Li-1 Ri-1

Li Ri

32

8 8 8 8

32 32 32 32

32

Pi

Figure 23 One round in the Blowfish algorithm [Stallings 1999].

How safe is it?

So far, there have been a few published papers on Blowfish cryptanalysis, but no
practical weaknesses have been found. Thus, the only available method of
breaking a Blowfish cipher is to perform a brute-force attack and considering that
a key size of 448 bits is allowed, the algorithm can be considered to be literally
invulnerable.

B.1.4 RC4
RC4 is a stream cipher developed by Ron Rivest of RSA Laboratories. RC4 used
to be a trade secret of RSA Laboratories, but an anonymous person published the
source code to the algorithm in 1995. Thus, RC4 is now free for public use.

64  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

Overview of the algorithm

The RC4 algorithm is essentially a pseudo random number generator that takes a
shorter key as input and generates a key sequence with the same length as the
message that is to be encrypted. The message and the key sequence is then bit-
by-bit XORed. The algorithm accepts key-lengths ranging from 40 bits to 448
bits.

How safe is it?

There have been many reports on successful attempts to break the 40-bit RC4
cipher using large numbers of computers connected in networks. In 1996 it was
reported that an MIT student was able to brake a 40-bit RC4 cipher in eight days
on a single $83,000 graphics machine. Thus, the weaker 40-bit algorithm can not
be considered suitable for encrypting highly classified information. The RC4
algorithm in itself though is considered secure, so provided that a longer key is
used, the algorithm can be considered safe.

How fast is it?

RC4 is known as one of the fastest encryption algorithms around. Because of its
speed, RC4 is often used as default encryption algorithm in implementations of
SSL.

B.2 Public-key Cryptography
The following is a description of two algorithms for public-key encryption.

B.2.1 Diffie-Hellman
The concept of public-key cryptography was invented in 1976 by a group of
researchers at Stanford University: Whitfield Diffie, Martin Hellman and Ralph
Merkle.
Diffie and Hellman developed the first useful public-key algorithm; an algorithm
used for exchanging keys over an unprotected network. The algorithm is based
on discrete logarithms, which display the characteristics of one-way functions.

Overview of the algorithm

The algorithm is very simple. If for example Alice want to communicate with
Bob, the protocol goes as follows:
1. Alice and Bob first agree on two numbers n and g, such that g is less than n

but greater than one. The two numbers don�t have to be kept secret and can be
communicated over a public network.

2. Alice chooses a random large integer x and computes X=gx mod n

Error! Style not defined. Error! Style not defined. 65

3. Bob chooses a random large integer y and computes Y=gy mod n

4. Alice sends X to Bob and Bob sends Y to Alice.
5. Alice computes k=Yx mod n

6. Bob computes k’=Xy mod n

Both k and k� are equal so Alice and Bob has now agreed on a common key to
use in further communication (using for example a block cipher).

How safe is it?

The security of the Diffie-Hellman key exchange lies in the fact that it is very
difficult to calculate discrete logarithms. For large primes, the task is considered
infeasible.

B.2.2 RSA
The Diffie-Hellman algorithm is a key-exchange algorithm and was not designed
to be used as a so called bulk-cipher (i.e. to encrypt a stream of data in a
connection). RSA was the first all-purpose public key encryption algorithm. It
can be used for key-exchange and bulk-ciphering as well as for message
authentication.
RSA is named after its three inventors Ron Rivest, Adi Shamir and Leonard
Adleman, who first introduced the algorithm in 1978. It has since withstood
years of extensive cryptanalysis. The RSA algorithm is based on the difficulty in
factoring large numbers. The private and public keys are functions of a pair of
large (100 to 200 decimal digits or larger) prime numbers. Recovering the
plaintext from one of the keys and the ciphertext is equivalent to factoring the
product of the two primes [Schneier 1994].

Overview of the algorithm

The algorithm is quite simple. Both parties in a communication generates two
key-pairs according to the following protocol:
1. Select two large prime�s p and q
2. Calculate n=p*q
3. Calculate φ(n)=(p-1)*(q-1)
4. Select an integer e such that
 gcd(φ(n),e)=1, 1<e<φ(n)

5. Calculate d=e-1 mod φ(n)
The public key is now the pair [e, n] and the private key is the pair [d, n]. To
encrypt a text, divide it into blocks Mi with size less than n and calculate
 Ci=Mi

e mod n

66  Hans Nilsson - Security in Distributed Java Applications Based on Enterprise JavaBeans

To decrypt the cipher, simply calculate
 Mi=Ci

d mod n

How safe is it?

According to Stallings [1999] there are three approaches to attacking RSA
ciphers:

• Brute-force attacks. This simply involves trying all possible keys. The
success of this approach depends on the key size, which is not defined in
RSA. In 1994 a distributed network of computers broke a RSA cipher with a
key size of 129 decimal digits (448 bits). A key size of 200 decimal digits
(664 bits) can be considered unbreakable for many years to come, as far as
brute force attacks are concerned.

• Mathematical attacks. This involves trying to find a fast way of factoring
the product of two large primes. Even though it hasn�t been proven that there
doesn�t exist a fast way to do perform prime factorisation, mathematicians
have been working on this problem for more than 300 years.

• Timing attacks. This is a new approach in attacking ciphers that shows how
difficult it is to assess the security of cryptographic algorithms. It was
presented as late as in 1996 by Paul Kocher. Kocher displayed that a snooper
could determine the key size used in a cipher (and thus limit the search space
for a brute-force attack) by estimating how long time it takes for a computer
to decipher the message. Introducing a random delay when encrypting and
decrypting messages can eliminate this security flaw.

How fast is it?

Because of the heavy calculations, the RSA algorithm is very slow. A rule of
thumb says that in hardware it is 1000 times slower than DES and in software
100 times slower than DES. Therefore RSA is often used simply for key-
exchange, just like Diffie-Hellman, and for digital signatures.

B.3 Message Authentication
The following is a description of two algorithms for generating message digests.

B.3.1 MD5
MD5 is a message-digest algorithm developed by Ron Rivest at MIT. MD5 was
the most widely used hash algorithm until a few years ago, when concerns were
raised on the security against brute-force attacks and cryptoanalytic attacks.
However MD5 is described in a RFC (Request for Comment) by IETF so it
remains heavily used on the Internet.

Error! Style not defined. Error! Style not defined. 67

Overview of the algorithm

The algorithm takes as input a message of arbitrary length and produces a 128-bit
message digest. The algorithm works by mangling the bits in a sufficiently
complicated way so that every output bit is effected by every input bit. The data
is processed in four rounds where each round consists of 16 non-linear functions.

How safe is it?

As mentioned earlier, there have been some doubts about the security of MD5.
Advances in computing power and hash function cryptanalysis has led to a
decline in the popularity of first MD4 and then MD5 in favour of newer hash
functions with longer hash-codes and with features designed to resist specific
cryptoanalytic attacks.

B.3.2 SHA-1
SHA-1 is a message-digest algorithm that was developed by NSA as part of the
Secure Hash Standard (SHS). SHA-1 is based on MD4 and is very similar to
MD5.

Overview of the algorithm

The algorithm takes a text of arbitrary length and produces a 160 bit long
message-digest. Just like MD5, the data is processed in four rounds. Each round
consists of 20 non-linear functions.

How safe is it?

The primary difference between MD5 and SHA-1 is the increased key-length
from 128 bits to 160 bits. This should protect the algorithm from brute-force
attacks for a foreseeable future. As opposed to MD5, SHA-1 does not appear to
be vulnerable to cryptoanalytic attacks. However little is publicly known about
the design of SHA-1, so the strength is difficult to judge.

Error! Style not defined. Error! Style not defined. 3

 Ida Systems Ab
Box 576

SE-581 07 Linköping
Sweden

 Tel: +46 (0)13 37 37 00

Fax: +46 (0)13 37 37 90
 E-mail: info@idasys.se

Internet: www.idasys.se

